SCHAUM'S
ouT/;

PROGRAMMING
WITH C

Second Edition

A o o
Preforrid by thausandi of programme
ol 1 vedell i

Broad, in-depth coverage of C programmeng
lnguge

=1
Fralluct wth e of eamples,
soived prosblems, and eview
RS

el o best prig or seft-
A5y

B S BETH ey
g Sy 15 | iy ey i |

SCHAUM'S OUTLINE OF

THEORY AND PROBLEMS

OF

PROGRAMMING
WITH

C

Second Edition

BYRON S. GOTTFRIED, Ph.D.

Professor of Industrial Engineering
University of Pittsburgh

SCHAUM’S OUTLINE SERIES
MCGRAW-HILL

New York St. Louis San Francisco Auckland Bogotd Caracas
Lisbon London Madrid Mexico City Milan Montreal
New Delhi San Juan Singapore
Sydney Tokyo Toronto

In memory of Sidney Gottfried:
father, teacher and friend

BYRON S. GOTTFRIED is a Professor of Industrial Engineering and Academic
Director of the Freshman Engineering Program at the University of Pittsburgh. He
received his Ph.D. from Case-Western Reserve University in 1962, and has been a
member of the Pitt faculty since 1970. His primary interests are in the areas of computer
simulation, software engineering, and the use of new educational paradigms. He is the
author of eleven college textbooks, including Programming with C, Programming with
Pascal and Programming with Structured BASIC in the Schaum’s Outline Series.

DEC is a registered trademark of Digital Equipment Corporation.

IBM is a registered trademark of International Business Machines Corporation.
IBM PC-AT is a trademark of International Business Machines Corporation.
Microsoft is a registered trademark of Microsoft Corporation.

Quick C and MS-DOS are registered trademarks of Microsoft Corporation.
Turbo C and Turbo C++ are registered trademarks of Borland International, Inc.
VAX is a trademark of Digital Equipment Corporation.

VMS is a trademark of Digital Equipment Corporation.

Schaum's Outline of Theory and Problems of
PROGRAMMING WITHC

Copyright © 1996, 1990 by The McGraw-Hill Companics, Inc. All rights reserved. Printed in the United
States of America. Except as permitted under the Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a data base or retricval system, without the
prior written permission of the publisher.

4567891011121314151617181920PRSPRS9010938
ISBN 0—07-024035-3

Sponsoring Editors: John Aliano, Arthur Biderman
Production Supervisor: Suzanne Rapcavage
Editing Supervisor: Maureen Walker

Library of Congress Cataloging-in-Publication Data
Gottfried, Byron S., date
Schaum’s outline of theory and problems of programning with C/
Byron S. Gottfried. -- 2nd ed.
p. cm. -- (Schaum’s outline series)
ISBN 0-07-024035-3
1. C (Computer program language) [Title. 1. Series.
QA76.73.C15G67 1996
005.13’3--dc20 96-2724
CIp

McGraw-Hill 32

A Division of The McGraw-Hill Companies

Preface

C has continued to increase in popularity since the publication of the first edition of this book in 1990.
Most newer compilers provide numerous extensions to the 1989 ANSI standard, as well as a full-feature
graphical programming environment including a debugger, a project manager, and extensive on-line help.
Moreover, interest in C has not been diminished by the emergence of C++, since the features found in this
newer programming language require a solid background in C.

This second edition provides instruction in the use of the C language, within the context of contemporary
C programming style. It includes complete and understandable explanations of the commonly used features of
C, including most of the features included in the current ANSI standard. In addition, the book presents a
contemporary approach to programming, stressing the importance of clarity, legibility, modularity and
efficiency in program design. Thus, the reader is exposed to the principles of good programming practice as
well as the specific rules of C. Complete C programs are presented throughout the text, beginning with the
first chapter. The use of an interactive programming style is emphasized throughout the text.

The book can be used by a wide reader audience, ranging from beginning programmers to practicing
professionals. It is particularly well suited for advanced secondary or beginning college-level students as a
textbook for an introductory programming course, as a supplementary text, or as an effective independent-
study guide.

Many examples are included as an integral part of the text. These include numerous programming
examples of varying complexity, as well as illustrative drill-type problems. The sample programs conform to
the ANSI C standard. Many are solved using other programming languages in the companion Schaum’s
Outlines, thus providing the reader with a basis of comparison among several popular languages.

Sets of review questions and drill problems are provided at the end of each chapter. The review questions
enable readers to test their recall of the material presented within each chapter. They also provide an effective
chapter summary. The drill problems reinforce the principles presented within each chapter. The reader
should solve as many of these problems as possible. Answers to most of the drill problems are provided at the
end of the book.

In addition, problems that require the writing of complete C programs are presented at the end of each
chapter, beginning with Chap. 5. The reader is encouraged to write and execute as many of these programs as
possible. This will greatly enhance the reader’s self-confidence and stimulate interest in the subject.
(Computer programming is a demanding skill, much like creative writing or playing a musical instrument. As
such, it cannot be learned simply by reading a textbook!)

Most of these programming problems require no special mathematical or technical background. Hence,
they can be solved by a broad range of readers. When using this book in a programming course, the instructor
may wish to supplement these problems with additional programming exercises that reflect particular
disciplinary interests.

A number of changes have been made to the earlier edition. Chapter 5 has been rewritten, illustrating the
use of C within Borland International’s Turbo C++ programming environment, and the material on debugging
techniques has been rewritten and expanded. The topics in Chap. 6 have been rearranged to correspond to the
order in which they are presented in most introductory programming courses, with branching preceding
looping. Some earlier material on the use of functions, reflecting an older programming style, has been
removed from Chap. 7, and a section on dynamic memory allocation has been added to Chap. 10. Stylistic
changes have been made in most programming examples; in particular, programs involving functions now
emphasize full function prototyping, as recommended by the current ANSI standard.

All of the programming examples and many of the end-of-chapter programming problems have been
solved on an Intel-type (“IBM-compatible”) personal computer, using several different versions of Borland
International’s Turbo C++ compiler. In addition, some of the examples were run on a Digital Equipment VAX
computer, using the versions of C provided by DEC for their VMS operating system.

iii

iv PREFACE

The principal features of C are summarized in Appendixes A through H at the end of the book. This
material should be used frequently for ready reference and quick recall. It is particularly helpful when writing
or debugging a new program.

BYRON S. GOTTFRIED

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Contents

INTRODUCTORY CONCEPTScorenrincrcnrersvisenns N |
1.1 Introduction to0 COMPULETSc.cccevirieririiirieererirernerereceeeensaeeeseeseeeensosnsseresneseressnssnennas 1
1.2 Computer CharaCteriSICSccooceiuiirireerieriarerricreettee st et seeste st eeeees s eabe et e seresessenneen 2
1.3 Modes Of OPETrationcoc.veieiiriiieuiiirereee et ebte et sae bbb e saee e e cmesmss s et snetene 4
1.4 Types of Programming LANZUAZEScceccreiiereerremirnrerteierinic i reneencsnesnesnenes 7
1.5 INtroduCtion 0 € oottt et bbbt st s e 7
1.6 Some Simple C PrOZIAMSc..ooiiivenieiiniiriicie st ettt e 10
1.7 Desirable Program Characteristicscccooivereniiiiiiiioniccin e 18
C Fundamentals .. . 24
2.1 The C Character SEtccoeeeierrieiiiiieriieereeieeectetertetes et ebe s s aes s e s asseanenanes 24
2.2 Identifiers and KEYWOIdSccccomiiiieiiieiieiiieiiiis ettt ee e ae e sre s 24
2.3 DAta TYPES .evveieciereieiiciirirre e reetetete sttt bbb bbb et ebeene e 26
2.4 COMSLANIS ...ttt et et rer ettt e e e e e e e reeeaasnesbe e searesesesebresresenevs e se e smeeeaeeeeneeas 27
2.5 Variables and AITAYSociciiiiiric et cenr e en e 33
2.6 DECIATatiONSc.ooeiveriiiiereecceteiee ettt sttt e s bt 35
2T EXPIESSIONS ..coovieieieiiimieteienieneetertaat e st erereeneeseteseasteteseeasesesaeseatassenseressanseresntenessensenens 38
2.8 SHALEIMIENTSooiiviiieiieretiiit it eeerter et ettt b sttt esmeseebessassarenssebenasse b esseseencatenns 39
2.9 Symbolic CONSEANLSccooiiiiiiiiiertircterr e sesae e b e e 40
Operators and EXPressions ... 46
3.1 Arithmetic OPEratorscocourmimiiireerereririieieesiesseeseseerensseasssascecasasesasesnarasssescsnans 46
3.2 UNGATY OPEIALOLS ..ovviviereiererererrieiatisieteserseseteaeesesaessbeserssesasesseasessenssbensessesensensensenssseans 50
3.3 Relational and Logical OPeratorsccccommimenicroreernnrirrsreernre et enaones 53
3.4 ASSIZNMENE OPETAIOTSc.coviiiiiiieieieeritirietsteaetesiree e eeseas et et esea et eeeasesnenesesasenessenes 56
3.5 The Conditional OPEratorc.oceviiieirieirieiiiiirrsreeeie e eresssbesaese b e e seseeseses e 59
3.6 Library FUNCLIONSccooiiiiiiii ettt et et aens 61
Data Input and Qutput rerisnessnesnassaeesstessessrssentnents 68
4.1 PreliMINATIESccvecevviiriieieteeie ittt ettt e ee et et ae s b s e as st sastatesneseseen avenee 68
4.2 Single Character Input ~ The getchar FUunctionccccovevveveiirencee e 69
4.3 Single Character Output — The putchar FUnctionc..ccccccnvinineiininnecnicnieninens 69
4.4 Entering Input Data — The scanf FUnCtioncccccevininiiiineniennienciee s 71
4.5 More About the SCANT FUNCHION ..ot et 75
4.6 Writing Output Data — The printf FURCtioncccoviivinnnninnireinne e 80
4.7 More About the printf FUNCHONcccocociviiriiinieniie ettt sen e 84
4.8 The gets and puts FUNCHONScoievevirrerieeeieie e et creeeneesveeerresane st e enesesnee e 89
4.9 Interactive (Conversational) Programmingcocovveeriveevnrrrsrerenienneieseeenraie v 90
Preparing and Running a Complete C Programoecnnnsisirionine . 101
5.1 Planning @ C PrOZraMccccceirivmerereiererenreriisnnsrnrsreseresinsatasessssessasasassesesesssssrossons 101
5.2 WItINg @ C PrOZIAIM ...cocoiiriiimiieiiniie et ettt et ss et sres et aamsese st seeneseasnes 103
5.3 Entering the Program into the COMPULETrccoovvivieriieieieniieice e 104
5.4 Compiling and Executing the Programcccccorvvmmviieeieeirieeeenrcvceceeenacsavsenes 106
5.5 EITOr DI@BROSHCSvoveeeiieeireeieieiiiseeee et ee ettt sae et ettt seeseere s saeeaeanas 109
5.6 Debugging TEChNIQUESccveeeiiiriiiiieiiticee ettt et ese s nesenes 112

vi

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

CONTENTS
Control Statements retsetsareteseraate s st a s AR R R e SRRt eSS amenereReasEe et Reaesasares 122
6.1 PrellMiNAriEscocveiviiiieiiieniioere sttt ettt et ae e h et aaae srasbe s et et saeenaas 122
6.2 Branching: The if - @15 Statementccocoiriiiiiiierrinnrieiee et e e 124
6.3 Looping: The While Statementcoocooiriiiininiieieeietececer ettt eneesr e veaie e ans 127
6.4 More Looping: The do - while Statementcc.cccoievinieniininninie s cenrierneceens 130
6.5 Still More Looping: The TOr Statementc.ccocooveervvceicrieiinieiecreceeninsinen 133
6.6 Nested Control SIUCTUTES ..ottt et enee e ens 136
6.7 The sSWitCh StAtEMENtcooooviiiiriiiiiiiiiee vttt st e ssea et e enee 146
6.8 The break Statementcccocoiiiiiiiiiiien ettt 153
6.9 The CONTINUE SEAEMENTccocconiiiiiiiiiiis e et ssaenen 155
6.10 The Comma OPEIALOTcocouiiiiiiiiiirieiinert ettt et st re e st ebe st esaesnee e 157
6.11 The QOTO SEALEMENTc.ecviiviriiereriiiit e ettt rieetetecaesseresaesrebeserssereseassemsesesaeasarannnas 160
Functions ereseteseisetiesesanebtrestsntesbtertssnnssnesater ras s e s bes e s bassRaesebes 174
Tl A Brief OVEIVIEW ..o r ettt s eres e 174
7.2 Defining @ FUNCHON ..o s 176
7.3 AcCCesSiNZ @ FURCHIONoocoiiiiiiiiiiceeec ettt e 179
7.4 FUunCtion ProtOtYPEScooceoriiiiiiiiiienie ettt sn ettt 181
7.5 Passing Arguments to @ FUNCtON ... 188
7.6 RECUISION ..eociiriiireeiieit ettt ettt bbb s sb e bt st s e sabe s 194
Program Structure Eeresssesiessresienisntabe e b e s se s s e s re R b e abe A b PE RS SRS SRR R SR RS e s e s R e s RO e R e 207
8.1 Storage CIASSESooiiiiiiiiiie it e e s 207
8.2 Automatic Variablescoocoiiiiiniiiiiiiii e 208
8.3 External (Global) Variablescccooiriiiiiieiie e 210
8.4 Static VAIabIEScooiviiiiiiie et e 216
8.5 Multifile PrOgrams ..ottt s s 219
8.6 More About Library FUNCHONScveoiiiiceiiicieceree ettt et e 228
ATTRAYS coriiiiisistrireninnssnisisisscssssmsssstsssorsnsssismenssertsssresssrsasistosssssatasssasaronsastsessnassssssnssssnanssasans 241
9.1 Defining @Nn ATTAY ..cccoooiiiiriiiiiiiieeint sttt st st e sa e 241
9.2 PrOCESSING AN ATTAY ...vevoriieeiriermiererentiresteseemerns st emereeeesesiassesestsssssssassressesnass e ciannasens 245
9.3 Passing Arrays to FUNCHONScoocoiiiiciiniiiiic e 248
9.4 Multidimensional AITAYScooicieiiriniiniin et e 259
9.5 Arrays and SITINEScovuereinnriecmriennc ettt e 265
Pointers Netesusebesereserensis NIt RSN R Se e e b e b e SR ba SRR SRR SRR SRS SRR s A RS sR RS RPN s e R e et e e eas 280
10.1 Fundamentals ... s 280
10.2 Pointer Declarationsoccooieriiiioiciiece e e 283
10.3 Passing Pointers to FUNCHONS ...t 284
10.4 Pointers and One-Dimensional AITAYSccccooeoiriiriiiiciiie i 291
10.5 Dynamic Memory AIOCAtIONcco.eovroreiniiei i 294
10.6 Operations 0n POINIETScccocviiiiiiiiiinieiiric e 297
10.7 Pointers and Multidimensional ArTaysccccoociiiiiiiiiii e 299
10.8 Arrays Of POINIETSocooiieiiiiiiiiiiiiiciiie v 304
10.9 Passing Functions to Other Functions ..o 315

10.10 More about Pointer Declarationscococivviiiiiiiiiiereieieiniimrreeeeeeeee s ernraeeresaes 322

CONTENTS vii

Chapter 11 Structures and Unions TOT— versseeessessrsesanerineneseranane 338
T1.1 Defining @ StIUCIUIE ..oeooiiiiiie ettt e sttt sn et s 338
11.2 Processing @ SIFUCIUIE ...coouieiiiiiieiiicccreeeie et e b s 343
11.3 User-Defined Data Types (LYPedef) ..o 353
11.4 Structures and POINIETSccccieiiiiiiiinicicteincc et 356
11.5 Passing Structures t0 FUNCHONSccococveimiiiciinienainns s 360
11.6 Self-Referential STrUCTUIEScceviveirnreriierrieecr et e 370
T1.7 UNIONS oiiiiievieriivieienicreren e sriscacecres e s st v e e eess s e serasat e smnesenes s enernes s raneseneesneesaee 382
Chapter 12 Data Files 399
12.1 Opening and Closing a Data Filec..ccccooiiiiiiiiiicceciec s 399
12.2 Creating a Data Fileccccoiiiiiiiiicieicrte s 401
12,3 Processing a Data Filecocoiriiiiinir et 407
12.4 Unformatted Data Filesccoeeiiniiioiiieieiineceie et 412
Chapter 13 Low-Level Programming ... eiesterstiseneanisseessesnestesseestnssr e e s e n R e a e Ransnben 424
13,1 Register Variablescccocciviiiiriiirieiiienie e esineersreic e snre s e ssaessaesenesaressneesns 424
13,2 BitwiSe OPErAtIONScceevereeirienrersinreniisieereriiressisreseesseseessessessesssonsestasesessnasesesareeses 427
133 BIEFIEIAS oottt et b gt sac e 437
Chapter 14 Some Additional Features of C crerstestsreta bttt st b e a e besa e e ra e e nesasane ie 450
[4.1 ENUMETAtIONSooiiiiiiieieeteeie ettt et tce s re et e ae e ae e e e e esnsseeeneensaansenanens 450
142 Command Line Parametersoooceiiviiioimiiieieninesrieeeiee e esae e s cnessansesransesns 455
14.3 More About Library FUNCHONSc.cocoerieiirieiiicirr e s cecesanenenen 458
T4.4 IMIBETOS ..ttt ettt ettt ettt aa et e b et s b e reeb e aees e b et e ebaneeensenbeenens 458
14.5 The C PIEPIOCESSOTcocuiiiicuiiiciciecitence st mee e n et eeereses s eneneeesereenes 466
Appendix A NUMBER SYSTEMScoonvvctvnenrrisnnnssssinssssssmsesssssisssesssssesssssmsnssstsnsesssessssismsessssssssssasesss 476
Appendix B ESCAPE SEQUENCESucvevvvumneresererseenene “ .477
Appendix C OPERATOR SUMMARY 478
Appendix D DATA TYPES AND DATA CONVERSION RULES - cesestsnesetaseanesaren 479
Appendix £ THE ASCII CHARACTER SET - 481
Appendix ' CONTROL STATEMENT SUMMARYoucovmmememrmssnessnessmsssssssssssssssssssssssssssssasssssons 482
Appendix G COMMONLY USED scanf AND printf CONVERSION CHARACTERS.......... 484
SCaANT CONVErsion ChATACIETSc..ccvvvecrernierererierireneeresentiteassencoiestentasassessesssssasesssssenssanes 484
Printf Conversion ChAractersccovviiiciecicisie sttt eseesne s e 485
FIAES .o bbbk e b bbbttt e aeae b b e s e nns 486
Appendix H COMMONLY USED LIBRARY FUNCTIONSooonerersnscsnnensscene 487
ANSWERS TO SELECTED PROBLEMScuimiienimsensassomssessesassssaresssssssensassssssssasssnsssenessassss 491

INDEX- resserassasenesensaesansresanesenane - . 523

Complete Programming Examples

The programming examples are listed in the order in which they first appear within the text. The
examples vary from very simple to moderately complex. Multiple versions are presented for many of the
programs, particularly the simpler programs.

Area of a Circle — Examples 1.6 - 1.13

1.

2. Lowercase to Uppercase Character Conversion — Examples 3.31, 7.1

3. Lowercase to Uppercase Text Conversion — Examples 4.4,6.9,6.12, 6.16,9.2
4. Reading and Writing a Line of Text — Examples 4.19, 4.31

5. Averaging Student Exam Scores — Example 4.32

6. Compound Interest Calculations — Examples 5.1 — 5.4, 8.13

7. Syntactic Errors — Example 5.5

8. Execution Errors (Real Roots of a Quadratic Equation) — Example 5.6

9. Debugging a Program — Example 5.7

10. Debugging with an Interactive Debugger — Example 5.8

11. Generating Consecutive Integer Quantities — Examples 6.8, 6.11, 6.14, 6.15

12. Averaging a List of Numbers — Examples 6.10, 6.13, 6.17, 6.31

13. Repeated Averaging of a List of Numbers — Example 6.18

14. Converting Several Lines of Text to Uppercase — Examples 6.19, 6.34

15. Encoding a String of Characters — Example 6.20

16. Repeated Compound Interest Calculations with Error Trapping — Example 6.21
17. Solution of an Algebraic Equation — Example 6.22

18. Calculating Depreciation — Examples 6.26, 7.13

19. Searching for Palindromes — Example 6.32

20. Largest of Three Integer Quantities — Example 7.9

21. Calculating Factorials — Examples 7.10, 7.14, 8.2

22. Simulation of a Game of Chance (Shooting Craps) — Examples 7.11, 8.9

23. Printing Backwards — Example 7.15

24, The Towers of Hanoi — Example 7.16

25. Average Length of Several Lines of Text — Examples 8.3, 8.5

26. Search for a Maximum — Examples 8.4, 8.11

27. Generating Fibonacci Numbers — Examples 8.7, 8.12, 13.2

28. Deviations About an Average — Examples 9.8, 9.9

29. Reordering a List of Numbers — Examples 9.13, 10.16

30. A Piglatin Generator — Example 9.14

31. Adding Two Tables of Numbers — Examples 9.19, 10.22, 10.24

32. Reordering a List of Strings — Examples 9.20, 10.26

33. Analyzing a Line of Text — Example 10.8

34. Displaying the Day of the Year — Example 10.28

35. Future Value of Monthly Deposits (Compound Interest Calculations)y — Examples 10.30, 14.13
36. Updating Customer Records — Examples 11.14, 11.28

37. Locating Customer Records — Example 11.26

38. Processing a Linked List — Example 11.32

39. Raising a Number to a Power — Examples 11.37, 14.5

40. Creating a Data File (Lowercase to Uppercase Text Conversion) — Example 12.3
41. Reading a Data File — Examples 12.4, 14.9

42. Creating a File Containing Customer Records — Example 12.5

43. Updating a File Containing Customer Records — Example 12.6

44. Creating an Unformatted Data File Containing Customer Records — Example 12.7
45, Updating an Unformatted Data File Containing Customer Records — Example 12.8
46. Displaying Bit Patterns — Example 13.16

47. Data Compression (Storing Names and Birthdates) — Example 13.23

viil

Chapter 1

Introductory Concepts

This book offers instruction in computer programming using a popular, structured programming language
called C. We will learn how programs can be written in C. In addition, we will see how problems that are
initially described in very general terms can be analyzed, outlined and finally transformed into well-organized
C programs. These concepts are demonstrated in detail by the many sample problems that are included in the
text.

1.1 INTRODUCTION TO COMPUTERS

Today’s computers come in many different forms. They range from massive, multipurpose mainframes and
supercomputers to desktop-size personal computers. Between these extremes is a vast middle ground of
minicomputers and workstations. Large minicomputers approach mainframes in computing power, whereas
workstations are powerful personal computers.

Mainframes and large minicomputers are used by many businesses, universities, hospitals and
government agencies to carry out sophisticated scientific and business calculations. These computers are
expensive (large computers can cost millions of dollars) and may require a sizeable staff of supporting
personnel and a special, carefully controlled environment.

Personal computers, on the other hand, are small and inexpensive. In fact, portable, battery-powered
“laptop” computers weighing less than 5 or 6 pounds are now widely used by many students and traveling
professionals. Personal computers are used extensively in most schools and businesses and they are rapidly
becoming common household items. Most students use personal computers when learning to program with C.

Figure 1.1 shows a student using a laptop computer.

2 INTRODUCTORY CONCEPTS [CHAP. 1

Despite their small size and low cost, modern personal computers approach minicomputers in computing
power. They are now used for many applications that formerly required larger, more expensive computers.
Moreover, their performance continues to improve dramatically as their cost continues to drop. The design of
a personal computer permits a high level of interaction between the user and the computer. Most applications
(e.g., word processors, graphics programs, spreadsheets and database management programs) are specifically
designed to take advantage of this feature, thus providing the skilled user with a wide variety of creative tools
to write, draw or carry out numerical computations. Applications involving high-resolution graphics are
particularly common.

Many organizations connect personal computers to larger computers or to other personal computers, thus
permitting their use either as stand-alone devices or as terminals within a computer network. Connections over
telephone lines are also common. When viewed in this context, we see that personal computers often
complement, rather than replace, the use of larger computers.

1.2 COMPUTER CHARACTERISTICS

All digital computers, regardless of their size, are basically electronic devices that can transmit, store, and
manipulate information (i.e., data). Several different types of data can be processed by a computer. These
include numeric data, character data (names, addresses, etc.), graphic data (charts, drawings, photographs,
etc.), and sound (music, speech patterns, etc.). The two most common types, from the standpoint of a
beginning programmer, are numeric data and character data. Scientific and technical applications are
concemned primarily with numeric data, whereas business applications usually require processing of both
numeric and character data.

To process a particular set of data, the computer must be given an appropriate set of instructions called a
program. These instructions are entered into the computer and then stored in a portion of the computer’s
memory.

A stored program can be executed at any time. This causes the following things to happen.

1. A set of information, called the input data, will be entered into the computer (from the keyboard, a
floppy disk, etc.) and stored in a portion of the computer’s memory.

2. The input data will be processed to produce certain desired results, known as the output data.

3. The output data, and perhaps some of the input data, will be printed onto a sheet of paper or
displayed on a monitor (a television receiver specially designed to display computer output).

This three-step procedure can be repeated many times if desired, thus causing a large quantity of data to
be processed in rapid sequence. It should be understood, however, that each of these steps, particularly steps 2
and 3, can be lengthy and complicated.

EXAMPLE 1.1 A computer has been programmed to calculate the area of a circle using the formula a = nr 2, given a
numeric value for the radius r as input data. The following steps are required.

1. Read the numeric value for the radius of the circle.

2. Calculate the value of the area using the above formula. This value will be stored, along with the input data, in
the computer’s memory.

3. Print (display) the values of the radius and the corresponding area.

4. Stop.
Each of these steps will require one or more instructions in a computer program.

The foregoing discussion illustrates two important characteristics of a digital computer: memory and
capability to be programmed. A third important characteristic is its speed and reliability. We will say more

about memory, speed and reliability in the next few paragraphs. Programmability will be discussed at length
throughout the remainder of this book.

CHAP. 1] INTRODUCTORY CONCEPTS 3

Memory

Every piece of information stored within the computer’s memory is encoded as some unique combination of
zeros and ones. These zeros and ones are called bits (binary digits). Each bit is represented by an electronic
device that is, in some sense, either “off” (zero) or “on” (one).

Small computers have memories that are organized into 8-bit multiples called bytes, as illustrated in Fig.
1.2. Notice that the individual bits are numbered, beginning with 0 (for the rightmost bit) and extending to 7
(the leftmost bit). Normally, a single character (e.g., a letter, a single digit or a punctuation symbol) will
occupy one byte of memory. An instruction may occupy 1, 2 or 3 bytes. A single numeric quantity may
occupy 1 to 8 bytes, depending on its precision (i.e., the number of significant figures) and its fpe (integer,
floating-point, etc.).

bit number: 76 543210
HEENEREN

One byte

Fig. 1.2

The size of a computer’s memory is usually expressed as some multiple of 210 = 1024 bytes. This is
referred to as 1K. Modern small computers have memories whose sizes typically range from 4 to 16
megabytes, where 1 megabyte (IM) is equivalent to 210 x 210 bytes, or 210 K = 1024K bytes.

EXAMPLE 1.2 The memory of a personal computer has a capacity of 16M bytes. Thus, as many as 16 x 1024 x 1024 =
16,777,216 characters and/or instructions can be stored in the computer’s memory. If the entire memory is used to
represent character data (which is actually quite unlikely), then over 200,000 names and addresses can be stored within the
computer at any one time, assuming 80 characters for each name and address.

If the memory is used to represent numeric data rather than names and addresses, then more than 4 million individual
numbers can be stored at any one time, assuming each numeric quantity requires 4 bytes of memory.

Large computers have memories that are organized into words rather than bytes. Each word will consist
of a relatively large number of bits—typically 32 or 36. The bit-wise organization of a 32-bit word is
illustrated in Fig. 1.3. Notice that the bits are numbered, beginning with 0 (for the rightmost bit) and extending
to 31 (the leftmost bit).

bitno.: 313029282726252423222120 19181716151413121110 9 8 7 6 5 4 3 2 1 0

One 32-bit word

Fig. 1.3

Figure 1.4 shows the same 32-bit word organized into 4 consecutive bytes. The bytes are numbered in the
same manner as the individual bits, ranging from 0 (for the rightmost byte) to 3 (the lefimost byte).

The use of a 32- or a 36-bit word permits one numeric quantity, or a small group of characters (typically 4
or 5), to be represented within a single word of memory. Large computers commonly have several million
words (i.e., several megawords) of memory.

4 INTRODUCTORY CONCEPTS [CHAP. |

bitno.: 31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 O

NN AN EE AnEEEEEEN

One 4-byte (32-bit) word

Fig. 1.4

EXAMPLE 1.3 The memory of a large computer has a capacity of 32M (32,768K) words, which is equivalent to 32 x
1024 x 1024= 33,554,432 words. If the entire memory is used to represent numeric data (which is unlikely), then more
than 33 million numbers can be stored within the computer at any one time, assuming each numeric quantity requires one
word of memory.

If the memory is used to represent characters rather than numeric data, then about 130 million characters can be
stored at any one time, based upon 4 characters per word. This is enough memory to store the contents of several large
books.

Most computers also employ auxiliary storage devices (e.g., magnetic tapes, disks, optical memory
devices) in addition to their primary memories. These devices can store more than | gigabyte (1G = 1024M
bytes) of information. Moreover, they allow information to be recorded permanently, since they can often be
physically disconnected from the computer and stored when not in use. However, the access time (i.e., the
time required to store or retrieve information) is considerably greater for these auxiliary devices than for the
computer’s primary memory.

Speed and Reliability

Because of its extremely high speed, a computer can carry out calculations within minutes that might require
many days, perhaps even months or years, if carried out by hand. For example, the end-of-semester grades for
all students in a large university can typically be processed in just a few minutes on a large computer.

The time required to carry out simple computational tasks, such as adding two numbers, is usually
expressed in terms of microseconds (1 usec = 107 sec) or nanoseconds (1 nsec = 1073 usec = 1079 sec).
Thus, if a computer can add two numbers in 10 nanoseconds (typical of a modern medium-speed computer),
100 million (108) additions will be carried out in one second.

This very high speed is accompanied by an equally high level of reliability. Thus, computers never make
mistakes of their own accord. Highly publicized “computer errors,” such as a person’s receiving a tax refund
of several million dollars, are the result of programming errors or data entry errors rather than errors caused by
the computer itself.

1.3 MODES OF OPERATION

There are two different ways that a large computer can be shared by many different users. These are the batch
mode and the interactive mode. Each has its own advantages for certain types of problems.

Batch Processing

In batch processing, a number of jobs are entered into the computer, stored internally, and then processed
sequentially. (A job refers to a computer program and its associated sets of input data.) After the job is
processed, the output, along with a listing of the computer program, is printed on multiple sheets of paper by a
high-speed printer. Typically, the user will pick up the printed output at some convenient time, after the job
has been processed.

In classical batch processing (which is now obsolete), the program and the data were recorded on
punched cards. This information was read into the computer by means of a mechanical card reader and then
processed. In the early days of computing, all jobs were processed in this manner.

CHAP. 1] INTRODUCTORY CONCEPTS 5

Modern batch processing is generally tied into a timesharing system (see below). Thus, the program and
the data are typed into the computer via a timesharing terminal or a personal computer acting as a terminal.
The information is then stored within the computer’s memory and processed in its proper sequence. This form
of batch processing is preferable to classical batch processing, since it eliminates the need for punched cards
and allows the input information (program and data) to be edited while it is being entered.

Large quantities of information (both programs and data) can be transmitted into and out of the computer
very quickly in batch processing. Furthermore, the user need not be present while the job is being processed.
Therefore, this mode of operation is well-suited to jobs that require large amounts of computer time or are
physically lengthy. On the other hand, the total time required for a job to be processed in this manner may
vary from several minutes to several hours, even though the job may require only a second or two of actual
computer time. (Each job must wait its turn before it can be read, processed, and the results displayed.) Thus,
batch processing is undesirable when processing small, simple jobs that must be returned as quickly as
possible (as, for example, when learning computer programming).

Timesharing

Timesharing allows many different users to use a single computer simultaneously. The host computer may be
a mainframe, a minicomputer or a large desktop computer. The various users communicate with the computer
through their own individual terminals. In a modern timesharing network, personal computers are often used
as timesharing terminals. Since the host computer operates much faster than a human sitting at a terminal, the
host computer can support many terminals at the same time. Thus, each user will be unaware of the presence
of any other users and will seem to have the host computer at his or her own disposal.

An individual timesharing terminal may be wired directly to the host computer, or it may be connected to
the computer over telephone lines, a microwave circuit, or even an earth satellite. Thus, the terminal can be
located far—perhaps hundreds of miles—from its host computer. Systems in which personal computers are
connected to large mainframes over telephone lines are particularly common. Such systems make use of
modems (i.e., modulator/demodulator devices) to convert the digitized computer signals into analog telephone
signals and vice versa. Through such an arrangement a person working at home, on his or her own personal
computer, can easily access a remote computer at school or at the office.

Timesharing is best suited for processing relatively simple jobs that do not require extensive data
transmission or large amounts of computer time. Many applications that arise in schools and commercial
offices have these characteristics. Such applications can be processed quickly, easily, and at minimum expense
using timesharing.

EXAMPLE 1.4 A major university has a computer timesharing capability consisting of 200 hard-wired timesharing
terminals and 80 additional telephone connections. The timesharing terminals are located at various places around the
campus and are wired directly to a large mainframe computer. Each terminal is able to transmit information to or from the
central computer at a maximum speed of 960 characters per second.

The telephone connections allow students who are not on campus to connect their personal computers to the central
computer. Each personal computer can transmit data to or from the central computer at a maximum speed of 240
characters per second. Thus, all 280 terminals and personal computers can interact with the central computer at the same
time, though each student will be unaware that others are simultaneously sharing the computer.

Interactive Computing

Interactive computing is a type of computing environment that originated with commercial timesharing
systems and has been refined by the widespread use of personal computers. In an interactive computing
environment, the user and the computer interact with each other during the computational session. Thus, the
user may periodically be asked to provide certain information that will determine what subsequent actions are
to be taken by the computer and vice versa.

6 INTRODUCTORY CONCEPTS [CHAP. 1

EXAMPLE 1.5 A student wishes to use a personal computer to calculate the radius of a circle whose area has a value of
100. A program is available that will calculate the area of a circle, given the radius, (Note that this is just the opposite of
what the student wishes to do.) This program isn’t exactly what is needed, but it does allow the student to obtain an
answer by trial and error. The procedure will be to guess a value for the radius and then calculate a corresponding area.
This trial-and-error procedure continues until the student has found a value for the radius that yields an area sufficiently
close to 100.

Once the program execution begins, the message

Radius = ?

is displayed. The student then enters a value for the radius. Let us assume that the student enters a value of 5 for the radius.
The computer will respond by displaying
Area = 78.5398

Do you wish to repeat the calculation?
The student then types either yes or no. If the student types yes, the message
Radius = ?
again appears, and the entire procedure is repeated. If the student types no, the message
Goodbye

is displayed and the computation is terminated.

Shown below is a printed copy of the information displayed during a typical interactive session using the program
described above. In this session, an approximate value of r = 5.6 was determined afler oniy three calculations. The
information typed by the student is underlined.

Radius = ? §
Area = 78.5398
Do you wish to repeat the calculation? yes

Radius = 7 6
Area = 113.097

Do you wish to repeat the calculation? yes

Radius = ? 5.6
Area = 98.5204

Do you wish to repeat the calculation? no

Goodbye

Notice the manner in which the student and the computer appear to be conversing with one another. Also, note that
the student waits until he or she sees the calculated value of the area before deciding whether or not to carry out another
calculation. If another calculation is initiated, the new value for the radius supplied by the student will depend on the
previously calculated results.

Programs designed for interactive computing environments are sometimes said to be conversational in
nature. Computerized games are excellent examples of such interactive applications. This includes fast-action,
graphical arcade games, even though the user’s responses may be reflexive rather than numeric or verbal.

CHAP. 1] INTRODUCTORY CONCEPTS 7

1.4 TYPES OF PROGRAMMING LANGUAGES

There are many different languages can be used to program a computer. The most basic of these is machine
language—a collection of very detailed, cryptic instructions that control the computer’s internal circuitry. This
is the natural dialect of the computer. Very few computer programs are actually written in machine language,
however, for two significant reasons: First, because machine language is very cumbersome to work with and
second, because every different type of computer has its own unique instruction set. Thus, a machine-language
program written for one type of computer cannot be run on another type of computer without significant
alterations.

Usually, a computer program will be written in some high-level language, whose instruction set is more
compatible with human languages and human thought processes. Most of these are generai-purpose languages
such as C. (Some other popular general-purpose languages are Pascal, Fortran and BASIC.) There are also
various special-purpose languages that are specifically designed for some particular type of application. Some
common examples are CSMP and SIMAN, which are special-purpose simulation languages, and LISP, a /ist-
processing language that is widely used for artificial intelligence applications.

As a rule, a single instruction in a high-level language will be equivalent to several instructions in
machine language. This greatly simplifies the task of writing complete, correct programs. Furthermore, the
rules for programming in a particular high-level language are much the same for all computers, so that a
program written for one computer can generally be run on many different computers with little or no
alteration. Thus, we see that a high-level language offers three significant advantages over machine language:
simplicity, uniformity and portability (i.e., machine independence).

A program that is written in a high-level language must, however, be translated into machine language
before it can be executed. This is known as compilation or interpretation, depending on how it is carried out.
(Compilers translate the entire program into machine language before executing any of the instructions.
Interpreters, on the other hand, proceed through a program by translating and then executing single
instructions or small groups of instructions.) In either case, the translation is carried out automatically within
the computer. In fact, inexperienced programmers may not even be aware that this process is taking place,
since they typically see only their original high-level program, the input data, and the calculated results. Most
implementations of C operate as compilers.

A compiler or interpreter is itself a computer program. It accepts a program written in a high-level
language (e.g., C) as input, and generates a corresponding machine-language program as output. The original
high-level program is called the source program, and the resulting machine-language program is called the
object program. Every computer must have its own compiler or interpreter for a particular high-level
language.

It is generally more convenient to develop a new program using an interpreter rather than a compiler.
Once an error-free program has been developed, however, a compiled version will normally execute much
faster than an interpreted version. The reasons for this are beyond the scope of our present discussion.

1.5 INTRODUCTIONTO C

C is a general-purpose, structured programming language. Its instructions consist of terms that resemble
algebraic expressions, augmented by certain English keywords such as if, else, for, do and while. In this
respect C resembles other high-level structured programming languages such as Pascal and Fortran. C also
contains certain additional features, however, that allow it to be used at a lower level, thus bridging the gap
between machine language and the more conventional high-level languages. This flexibility allows C to be
used for systems programming (e.g., for writing operating systems) as well as for applications programming
(e.g., for writing a program to solve a complicated system of mathematical equations, or for writing a program
to bill customers).

C is characterized by the ability to write very concise source programs, due in part to the large number of
operators included within the language. It has a relatively small instruction set, though actual implementations
include extensive library functions which enhance the basic instructions. Furthermore, the language
encourages users to write additional library functions of their own. Thus the features and capabilities of the
language can easily be extended by the user.

8 INTRODUCTORY CONCEPTS [CHAP. 1

C compilers are commonly available for computers of all sizes, and C interpreters are becoming
increasingly common. The compilers are usually compact, and they generate object programs that are small
and highly efficient when compared with programs compiled from other high-level languages. The
interpreters are less efficient, though they are easier to use when developing a new program. Many
programmers begin with an interpreter, and then switch to a compiler once the program has been debugged
(i.e., once all of the programming errors have been removed).

Another important characteristic of C is that its programs are highly portable, even more so than with
other high-level languages. The reason for this is that C relegates most computer-dependent features to its
library functions. Thus, every version of C is accompanied by its own set of library functions, which are
written for the particular characteristics of the host computer. These library functions are relatively
standardized, however, and each individual library function is generally accessed in the same manner from
one version of C to another. Therefore, most C programs can be processed on many different computers with
little or no alteration.

History of C

C was originally developed in the 1970s by Dennis Ritchie at Bell Telephone Laboratories, Inc. (now a part of
AT&T). It is an outgrowth of two earlier languages, called BCPL and B, which were also developed at Bell
Laboratories. C was largely confined to use within Bell Laboratories until 1978, when Brian Kemnighan and
Ritchie published a definitive description of the language.” The Kernighan and Ritchie description is
commonly referred to as “K&R C.”

Following the publication of the K&R description, computer professionals, impressed with C’s many
desirable features, began to promote the use of the language. By the mid 1980s, the popularity of C had
become widespread. Numerous C compilers and interpreters had been written for computers of all sizes, and
many commercial application programs had been developed. Moreover, many commercial software products
that were originally written in other languages were rewritten in C in order to take advantage of its efficiency
and its portability.

Early commercial implementations of C differed somewhat from Kemighan and Ritchie’s original
definition, resulting in minor incompatibilities between different implementations of the language. These
differences diminished the portability that the language attempted to provide. Consequently, the American
National Standards Institute®* (ANSI committee X3J11) has developed a standardized definition of the C
language. Virtually all commercial C compilers and interpreters now adhere to the ANSI standard. Many also
provide additional features of their own.

In the early 1980s, another high-level programming language, called C++, was developed by Bjarme
Stroustrup®®* at the Bell Laboratories. C++ is built upon C, and hence all standard C features are available
within C++. However, C++ is not merely an extension of C. Rather, it incorporates several new fundamental
concepts that form a basis for object-oriented programming—a new programming paradigm that is of interest
to professional programmers. We will not describe C++ in this book, except to mention that a knowledge of C
is an excellent starting point for leaming C++.

This book describes the features of C that are included in the ANSI standard and are supported by
commercial C compilers and interpreters. The reader who has mastered this material should have no difficulty
in customizing a C program to any particular implementation of the language.

Structure of a C Program

Every C program consists of one or more modules called finctions. One of the functions must be called main.
The program will always begin by executing the main function, which may access other functions. Any other
function definitions must be defined separately, either ahead of or after main (more about this later, in Chaps.
7 and 8).

* Bnan W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice-Hall, 1978.
* ANSI Standard X3.159-1989. American National Standards Institute, 1430 Broadway, New York, NY, 10018. (See also Brian W.
v Kemlghan and Dennis M. Ritchie, The C Programming Language, 2d ed., Prentice-Hall, 1988.)
Strouslrup Bjame, The C++ Programming Language, 2d ed., Addison-Wesley, 1991.

CHAP. 1] INTRODUCTORY CONCEPTS 9

Each function must contain:

1. A function heading, which consists of the function name, followed by an optional list of arguments,
enclosed in parentheses.

2. A list of argument declarations, if arguments are included in the heading.

3. A compound statement, which comprises the remainder of the function.

The arguments are symbols that represent information being passed between the function and other parts of
the program. (Arguments are also referred to as parameters.)

Each compound statement is enclosed within a pair of braces, i.e., { }. The braces may contain one or
more elementary statements (called expression statements) and other compound statements. Thus compound
statements may be nested, one within another. Each expression statement must end with a semicolon (;).

Comments (remarks) may appear anywhere within a program, as long as they are placed within the
delimiters /* and */ (e.g., /* this is a comment */). Such comments are helpful in identifying the
program’s principal features or in explaining the underlying logic of various program features.

These program components will be discussed in much greater detail later in this book. For now, the
reader should be concerned only with an overview of the basic features that characterize most C programs.

EXAMPLE 1.6 Area of a Circle Here is an elementary C program that reads in the radius of a circle, calculates its
area and then writes the calculated result.

/* program to calculate the area of a circle */ /* TITLE (COMMENT) */
#include <stdio.h> /* LIBRARY FILE ACCESS */
main() /* FUNCTION HEADING */
{
float radius, area; /* VARIABLE DECLARATIONS */
printf(*Radius = ? *); /* OUTPUT STATEMENT (PROMPT) */
scanf (“%f", &radius); /* INPUT STATEMENT */
area = 3.14159 * radius * radiuvus; /* ASSIGNMENT STATEMENT */
printf(“Area = %f", area); /* OUTPUT STATEMENT */
}

The comments at the end of each line have been added in order to emphasize the overall program organization.
Normally a C program will not look like this. Rather, it might appear as shown below.

/* program to calculate the area of a circle */
#include <stdio.h>
main()

{

float radius, area;

printf(*"Radius = ? “);
scanf(*%f", &radius);

area = 3.14159 * radius * radius;
printf("Area = %f", area);

The following features should be pointed out in this last program.

1. The program is typed in lowercase. Either upper- or lowercase can be used, though it is customary to type
ordinary instructions in lowercase. Most comments are also typed in lowercase, though comments are
sometimes typed in uppercase for emphasis, or to distinguish certain comments from the instructions.

10 INTRODUCTORY CONCEPTS [CHAP. 1

(Uppercase and lowercase characters are not equivalent in C. Later in this book we will see some special
situations that are characteristically typed in uppercase.)

2. The first line is a comment that identifies the purpose of the program.

3. The second line contains a reference to a special file (called stdio.h) which contains information that must be
included in the program when it is compiled. The inclusion of this required information will be handled
automatically by the compiler.

4. The third line is a heading for the function main. The empty parentheses following the name of the function
indicate that this function does not include any arguments.

5. The remaining five lines of the program are indented and enclosed within a pair of braces. These five lines
comprise the compound statement within main.

6. The first indented line is a variable declaration. It establishes the symbolic names radius and area as
floating-point variables (more about this in the next chapter).

7. The remaining four indented lines are expression statements. The second indented line (printf) generates a
request for information (namely, a value for the radius). This value is entered into the computer via the third
indented line (scanf).

8. The fourth indented line is a particular type of expression statement called an assignment statement. This
statement causes the area to be calculated from the given value of the radius. Within this statement the asterisks
(*) represent multiplication signs.

9. The last indented line (printf) causes the calculated value for the area to be displayed. The numerical value
will be preceded by a brief label.

10. Notice that each expression statement within the compound statement ends with a semicolon. This is required of
all expression statements.

11. Finally, notice the liberal use of spacing and indentation, creating whitespace within the program. The blank
lines separate different parts of the program into logically identifiable components, and the indentation indicates
subordinate relationships among the various instructions. These features are not grammatically essential, but
their presence is strongly encouraged as a matter of good programming practice.

Execution of the program results in an interactive dialog such as that shown below. The user’s response is

underlined, for clarity.

Radius = 7 3
Area = 28.274309

1.6 SOME SIMPLE C PROGRAMS

In this section we present several C programs that illustrate some commonly used features of the language.
All of the programs are extensions of Example 1.6; that is, each program calculates the area of a circle, or the
areas of several circles. Each program illustrates a somewhat different approach to this problem.

The reader should not attempt to understand the syntactic details of these examples, though experienced
programmers will recognize features similar to those found in other programming languages. Beginners
should focus their attention only on the overall program logic. The details will be provided later in this book.

EXAMPLE 1.7 Area of a Circle Here is a variation of the program given in Example 1.6 for calculating the area of
a circle.

/* program to calculate the area of a circle */

#include <stdio.h>

#define PI 3.14159

float process(float radius); /* function prototype */

CHAP. 1] INTRODUCTORY CONCEPTS 11

main()

{

float radius, area; /* variable declaration */

printf(*Radius = ? "),
scanf ("%f", &radius);

area = process(radius);
printf("Area = %f", area);

}

float process(float r) /* function definition */

{
float a; /* local variable declaration */
a=PIlL*r*r;
return(a);

}

This version utilizes a separate programmer-defined function, called process, to carry out the actual calculations
(i.e., to process the data). Within this function, r is an argument (also called a parameter) that represents the value of the
radius supplied to process from main, and a is the calculated result that is returned to main. A reference to the function
appears in main, within the statement

area = process(radius});

The main function is preceded by a function declaration, which indicates that process accepts a floating-paoint
argument and returns a floating-point value. The use of functions will be discussed in detail in Chap. 7.

This program also contains a symbolic constant, P1, that represents the numerical value 3.14159. This is a form of
shorthand that exists for the programmer’s convenience. When the program is actually compiled, the symbolic constant
will automatically be replaced by its equivalent numerical value.

When this program is executed, it behaves in the same manner as the program shown in Example 1.6.

EXAMPLE 1.8 Area of a Circle with Error Checking Here is a variation of the program given in Example 1.7.

/* program to calculate the area of a circle, with error checking */
#include <stdio.h>

#define PI 3.14159

float process(float radius); /* function prototype */
main()
{

float radius, area; /* variable declaration */

printf(*Radius = ? *);
scanf(“%f", &radius);
if (radius < 0)
area = 0;
else
area = process(radius);

printf(*Area = %f*, area);

12 INTRODUCTORY CONCEPTS

float process(float r)

{
float a;
a="Pl *r*r;
return(a);

}

[CHAP. |

/* function definition */

/* local variable declaration */

This program again calculates the area of a circle. It includes the function process, and the symbolic constant PI, as
discussed in the previous example. Now, however, we have added a simple error correction routine, which tests to see if
the value of the radius is less than zero. (Mathematically, a negative value for the radius does not make any sense.) The
test is carried out within main, using an if - else statement (see Sec. 6.6). Thus, if radius has a negative value, a value
of zero is assigned to area; othenwise, the value for area is calculated within process, as before.

EXAMPLE 1.9 Areas of Several Circles The following program expands the previous sample programs by calculating

the areas of several circles.

/* program to calculate the areas of circles, using a for loop */

#include <stdio.h>
#define PI 3.14159

float process(float radius);

main{)

{

float radius, area;
int count, n;

printf(“How many circles? *);
scanf("%d", &n),

/* function prototype */

/* variable declaration */
/* variable declaration */

for (count = 1; count <= n; ++count) {

printf("\nCircle no. %d:
scanf(“%f", &radius);

if (radius < 0)
area = 0;
else

area = process(radius);

printf("Area = %f\n", area);

float process(float r)

{
float a;
a="PI *r *r,
return(a};

}

Radius = 7 *, count);

/* function definition */

/* local variable declaration */

In this case the total number of circles, represented by the integer variable n, must be entered into the computer before any
calculation is carried out. The for statement is then used to calculate the areas repeatedly, for all n circles (see Sec. 6.4).

CHAP. 1] INTRODUCTORY CONCEPTS 13

Note the use of the variable count, which is used as a counter within the for loop (i.e., within the repeated portion
of the program). The value of count will increase by 1 during each pass through the loop. Also. notice the expression
++count which appears in the for statement. This is a shorthand notation for increasing the value of the counter by 1:
i.e., it is equivalent to count = count + 1 (sce Sec. 3.2).

When the program is executed, it generates an interactive dialog, such as that shown below. The user’s responses are
again underlined.

How many circles? 3

Circle no. 1: Radius = 7 3
Area = 28.274309
Circle no. 2: Radius = ? 4
Area = 50.265442
Circle no. 3: Radius = 7 5

Area = 78,539749

EXAMPLE 1.10 Areas of an Unspecified Number of Circles The previous program can be improved by processing
an unspecified number of circles, where the calculations continue until a value of zero is entercd for the radius. This
avoids the need to count, and then specify, the number of circles in advance. This feature is especially helpful when there
are many sets of data to be processed.

Here is the complete program.

/* program to calculate the areas of circles, using a for loop;
the number of circles is unspecified */

#include <stdio.h>

#define PI 3.14159

float process(float radius); /* function prototype */
main()
{
float radius, area; /* variable declaration */
int count; /* variable declaration */

printf("To STOP, enter O for the radius\n");
printf(“\nRadius = ? ");
scanf("%f", &radius);

for (count = 1; radius != 0; ++count) {

if (radius < 0)
area = 0;
else
area = process(radius);

printf("Area = %f\n", area);

printf("\nRadius = ? ");
scanf ("%f", &radius);

float process(float r)

INTRODUCTORY CONCEPTS

/* function definition */

{
float a; /* local variable declaration */
a=Pl*r*r;
return{a);

}

[CHAP. 1

Notice that this program will display a message at the beginning of the program execution, telling the user how to end

the computation.

The dialog resulting from a typical execution of this program is shown below. Once again, the user’s responses are

underlined.

To STOP, enter O for the radius

Radius = 7 3
Area = 28.274309

Radius = 7 4
Area = 50.265442

Radius = 7 §
Area = 78.539749

Radius = 7?7 0

EXAMPLE 1.11 Areas of an Unspecified Number of Circles Here is a variation of the program shown in the previous

example.

/* program to calculate the areas of circles, using a while loop;

number of circles is unspecified */
#include <stdio.h>
#define PI 3.14159

float process(float radius);

main()

{

float radius, area;
printf("To STOP, enter O for the radius\n');
printf("\nRadius = 7 *);
scanf (*%f*, &radius);
while (radius != 0) {
if (radius < 0)
area = 0;
else
area = process(radius);
printf("Area = %f\n", area);

printf{"\nRadius = ? ");
scanf("%f", &radius);

/* variable declaration

/* function declaration */

*/

CHAP. 1] INTRODUCTORY CONCEPTS 15

float process(float r) /* function definition */

{

float a; /* local variable declaration */

a=PIlL*r*r;
return(a);

This program includes the same features as the program shown in the previous example. Now, however, we use a while
statement rather than a for statement to carry out the repeated program execution (see Sec. 6.2). The while statement
will continue to execute as long as the value assigned to radius is not zero.

In more general terms, the while statement will continue to execute as long as the expression contained within the
parentheses is considered to be true. Therefore, the first line of the while statment can be written more briefly as

while (radius) {
rather than
while (radius != 0) {

because any nonzero value for radius will be interpreted as a true condition.

Some problems are better suited to the use of the for statement, while others are better suited to the use of while.
The while statement is somewhat simpler in this particular application. There is also a third type of looping statement,
called do - while, which is similar to the while statement shown above. (More about this in Chap. 6).

When this program is executed, it generates an interactive dialog that is identical to that shown in Example 1.10.

EXAMPLE 1.12 Calculating and Storing the Areas of Several Circles Some problems require that a series of
calculated results be stored within the computer, perhaps for recall in a later calculation. The corresponding input data
may also be stored internally, along with the calculated results. This can be accomplished through the use of arrays.

The following program utilizes two arrays, called radius and area, to store the radius and the area for as many as
100 different circles. Each array can be thought of as a list of numbers. The individual numbers within each list are
referred to as array elements. The array elements are numbered, beginning with 0. Thus, the radius of the first circle will
be stored within the array element radius[0], the radius of the second circle will be stored within radius[1], and so
on. Similarly, the corresponding areas will be stored in area{0], area[1], etc.

Here is the complete program.

/* program to calculate the areas of circles, using a while loop;
the results are stored in an array; the number of circles is unspecified */

#include <stdio.h>

#define PI 3.14159

float process(float radius); /* function prototype */
main()
{
int n, 1 = 0; /* variable declaration */
float radius[100], area[100]; /* array declaration */

printf(*To STOP, enter 0 for the radius\n\n");
printf("Radius = ? *);
scanf (*%f", &radius(i]);

16 INTRODUCTORY CONCEPTS [CHAP. |

while (radius[i}) {

if (radius[i] < 0)
area[i] = 0;
else
area[i] = process(radius[i]);
printf(“Radius = ? ");
scanf (*%f*, &radius[++1i]);
}
n=--ij; /* tag the highest value of i */

/* display the array elements */
printf("\nSummary of Results\n\n");
for (i = 0; 1 <= n; ++i)
printf(“Radius = %f Area = %f\n", radius{i)], areafil]);

}

float process(float r) /* function definition */

{
float a; /* local variable declaration */
a="PIL *r *r;
return(a);

}

An unspecified number of radii will be entered into the computer, as before. As each value for the radius is entered (i.c.,
as the ith value is entered), it is stored within radius[i]. Its corresponding area is then calculated and stored within
area[i]). This process will continue until all of the radii have been entered, i.e., until a value of zero is entered for a
radius. The entire set of stored values (i.e., the array elements whose values are nonzero) will then be displayed.

Notice the expression ++1i, which appears twice within the program. Each of these expressions causes the value of i
to increase by 1; i.e., they are equivalentto 1 = i + 1. Similarly, the statement

n=--ij;

causes the current value of i to be decreased by | and the new value assigned to n. In other words, the statement is
equivalent to

n=1i -1,

Expressions such as ++i and - - i are discussed in detail in Chap. 3 (see Sec. 3.2).
When the program is executed it results in an interactive dialog, such as that shown below. The user’s responses are
once again underlined.

To STOP, enter 0 for the radius

Radius = ? 3
Radius = ? 4
Radius = ? 5§
Radius = ?2 0

Summary of Results

Radius = 3.000000 Area = 28.274309
Radius = 4.000000 Area = 50.265442
Radius = 5.000000 Area = 78.539749

CHAP. 1] INTRODUCTORY CONCEPTS 17

This simple program does not make any use of the values that have been stored within the arrays. lts only purpose is
to demonstrate the mechanics of utilizing arrays. In a more complex example, we might want to determine an average
value for the areas, and then compare each individual area with the average. To do this we would have to recall the
individual areas (i.c., the individual array elements area[0], area[1],. . ., etc.).

The use of arrays is discussed briefly in Chap. 2, and extensively in Chap. 9.

EXAMPLE 1.13 Calculating and Storing the Areas of Several Circles Here is a more sophisticated approach to
the problem described in the previous example.

/* program to calculate the areas of circles, using a while loop;
the results are stored in an array of structures;
the number of circles is unspecified;
a string is entered to identify each data set */

#include <stdio.h>

#define PI 3.14159

float process(float radius); /* function prototype */
main()
{
int n, i = 0; /* variable declaration */
struct {

char text[20],
float radius;
float area;
} circle{10]; /* structure variable declaration */

printf("To STOP, enter END for the identifier\n");
printf(*\nldentifier: *);
scanf ("%s", circle[i].text);
while (circle[i].text[O] != 'E’ || circle[i].text[1] I= 'N'
|| eircle{i].text[2] I= 'D') {
printf("Radius: ");
scanf("%f", &circle[i].radius);

if (circle[i].radius < 0)
circle[i].area = 0;
else
circlefi].area = process(circle[i].radius);

++1;
printf("\nIdentifier: *); /* next set of data */
scanf("%s", circle[i].text);

}

n=--ij; /* tag the highest value of i */

/* display the array elements */
printf("\n\nSummary of Results\n\n");
for (1 = 0; i <= n; ++i)
printf("%s Radius = %f Area = %f\n", circle[i].text,
circle[i].radius,
circle{i].area);

18 INTRODUCTORY CONCEPTS [CHAP. 1

float process(float r) /* function definition */

{

float a; /* local variable declaration */

a=PIL*r*r;
return(a),

In this program we cnter a one-word descriptor, followed by a value of the radius, for each circle. The characters that
comprise the descriptor are stored in an array called text. Collectively, these characters are referred to as a string
constant (see Sec. 2.4). In this program, the maximum size of each string constant is 20 characters.

The descriptor, the radius and the corresponding area of each circle are defined as the components of a structure (see
Chap. 11). We then define circle as an array of structures. That is, each element of circle will be a structure
containing the descriptor, the radius and the area. For example, circle[0].text refers to the descriptor for the first
circle. circle[0].radius refers to the radius of the first circle, and circle[0].area refers to the area of the first
circle. (Remember that the numbering system for array elements begins with 0, not 1.)

When the program is executed, a descriptor is entered for each circle, followed by a value of the radius. This
information is stored within circle[i].text and circle[i].radius. The corresponding area is then calculated and
stored in circle{i].area. This procedure continues until the descriptor END is entered. All of the information stored
within the array elements (i.c., the descriptor, the radius and the area for each circle) will then be displayed, and the
execution will stop. ‘

Execution of this program results in an interactive dialog, such as that shown below. Note that the user’s responses
are once again underlined.

To STOP, enter END for the identifier

Identifier: RED
Radius: 3

Identifier: WHITE
Radius: 4

Identifier: BLUE
Radius: 5

m
=
o

Identifier:

Summary of Results

RED Radius = 3.000000 Area = 28.274309
WHITE Radius = 4.000000 Area = 50.265442
BLUE Radius = 5.000000 Area = 78.,539749

1.7 DESIRABLE PROGRAM CHARACTERISTICS

Before concluding this chapter let us briefly examine some important characteristics of well-written computer
programs. These characteristics apply to programs that are written in any programming language, not just C.
They can provide us with a useful set of guidelines later in this book, when we start writing our own C
programs.

1. Integrity. This refers to the accuracy of the calculations. It should be clear that all other program
enhancements will be meaningless if the calculations are not carried out correctly. Thus, the integrity of
the calculations is an absolute necessity in any computer program.

CHAP. 1] INTRODUCTORY CONCEPTS 19

1.1
1.2
1.3

1.4
1.5
1.6
1.7
1.8
1.9

1.10
L.11

1.12
1.13
1.14
1.15
1.16
1.17

Clarity refers to the overall readability of the program, with particular emphasis on its underlying logic.
If a program is clearly written, it should be possible for another programmer to follow the program logic
without undue effort. It should also be possible for the original author to follow his or her own program
after being away from the program for an extended period of time. One of the objectives in the design of
C is the development of clear, readable programs through an orderly and disciplined approach to
programming,.

Simplicity. The clarity and accuracy of a program are usually enhanced by keeping things as simple as
possible, consistent with the overall program objectives. In fact, it may be desirable to sacrifice a certain
amount of computational efficiency in order to maintain a relatively simple, straightforward program
structure.

Efficiency is concerned with execution speed and efficient memory utilization. These are generally
important goals, though they should not be obtained at the expense of clarity or simplicity. Many
complex programs require a tradeoff between these characteristics. In such situations, experience and
common sense are key factors.

Modularity. Many programs can be broken down into a series of identifiable subtasks. It is good
programming practice to implement each of these subtasks as a separate program module. In C, such
modules are written as functions. The use of a modular programming structure enhances the accuracy
and clarity of a program, and it facilitates future program alterations.

Generality. Usually we will want a program to be as general as possible, within reasonable limits. For
example, we may design a program to read in the values of certain key parameters rather than placing
fixed values into the program. As a rule, a considerable amount of generality can be obtained with very
little additional programming effort.

Review Questions

What is a mainframe computer? Where can mainframes be found? What are they generally used for?
What is a personal computer? How do personal computers differ from mainframes?

What is a supercomputer? A minicomputer? A workstation? How do these computers differ from one another?
How do they differ from mainframes and personal computers?

Name four different types of data.

What is meant by a computer program? What, in general, happens when a computer program is executed?
What is computer memory? What kinds of information are stored in a computer’s memory?

What is a bit? What is a byte? What is the difference between a byte and a word of memory?

What terms are used to describe the size of a computer’s memory? What are some typical memory sizes?

Name some typical auxiliary memory devices. How does this type of memory differ from the computer’s main
memory?

What time units are used to express the speed with which elementary tasks are carried out by a computer?

What is the difference between batch processing and timesharing? What are the relative advantages and
disadvantages of each?

What is meant by interactive computing? For what types of applications is interactive computing best suited?
What is machine language? How does machine language differ from high-level languages?

Name some commonly used high-level languages. What are the advantages of using high-level languages?
What is meant by compilation? What is meant by interpretation? How do these two processes differ?

What is a source program? An object program? Why are these concepts important?

What are the general characteristics of C?

20

1.18
1.19
1.20
1.21
1.22

1.23
1.24

1.25
1.26
1.27

1.28
1.29

1.30

1.31

INTRODUCTORY CONCEPTS [CHAP. |

Where was C originally developed and by whom? What has been done to standardize the language?

What is C++? What is the relationship between C and C++?

What are the major components of a C program? What significance is attached to the name main?

Describe the composition of a function in C.

What are arguments”? Where do arguments appear within a C program? What other term is sometimes used for an
argument?

What is a compound statement? How is a compound statement written?

What is an expression statement? Can an expression statement be included in a compound statement? Can a
compound statement be included in an expression statement?

How can comments (remarks) be included within a C program? Where can comments be placed?

Are C programs required to be typed in lowercase? s uppercase ever used in a C program? Explain.

What is an assignment statement? What is the relationship betwcen an assignment statement and an expression
statement?

What item of punctuation is used at the end of most C statements? Do all statements end this way?

Why arc some of the statements within a C program indented? Why are empty lines included within a typical C
program?

Summarize the meaning of cach of the following program characteristics: integrity, clarity, simplicity. efficiency,
modularity and generality. Why is each of these characteristics important?

Problems

Determine, as best you can. the purpose of each of the following C programs. Identify all variables within each
program. Identity all input and output statements. all assignment statements, and any other special features that
YOu recognize.

(@) main()

{
printf("welcome to the Wonderful World of Computing!\n");

(b) #define MESSAGE "Welcome to the Wonderful World of Computing!\n*

main()
{

printf (MESSAGE);
}

(¢) main()

{

float base, height, area;

printf(“Base: ");
scant("%f", &base);
printf(“Height: *);
scanf("%f", &height);

area = {(base * height) / 2.;
printf("Area: %f", area);

CHAP. 1] INTRODUCTORY CONCEPTS

(@) main()
{

float gross, tax, net;

printf("Gross salary: "};

scanf("%f", &gross);

tax = 0.14 * gross;

net = gross - tax;

printf("Taxes withheld: %.2f\n", tax);
printf(*Net salary: %.2f", net);

}
(e) 1int smaller(int a, int b);

main()

{

int a, b, min;

printf(“Please enter the first number: *);
scanf("%d", &a),
printf("Please enter the second number: ');
scanf ("%d", &b);

min = smaller(a, b);

printf("\nThe smaller number is: %d*, min);

int smaller(int a, int b)

{
if (a <= b)
return(a);
else
return(b);
}

(// int smaller(int a, int b);

main()

{

int count, n, a, b, min;
printf("How many pairs of numbers? *);
scanf ("%d", &n);

for (count = 1; count <= n; ++count) {
printf(“\nPlease enter the first number: *);
scanf("%d", &a);
printf("Please enter the second number: ");
scanf("%d", &b);

min = smaller(a, b);

printf("\nThe smaller number is: %d\n", min);

INTRODUCTORY CONCEPTS [CHAP. |

int smaller(int a, int b)

{
if (a <= b)
return(a);
else
return(b);
}

(g) 1int smaller(int a, int b};

main()

{
int a, b, min;
printf("To STOP, enter 0 for each number\n“);
printf("\nPlease enter the first number: *);
scanf("%d", &a);

printf(“Please enter the second number: *);
scanf ("%d", &b);

while (a !'= 0 || b 1= 0) {

min = smaller(a, b);
printf("\nThe smaller number is: %d\n*, min);

printf("\nPlease enter the first number: *);
scanf("%d", &a);
printf("Please enter the second number: *);
scanf("%d", &b),;

int smaller(int a, int b)

{
if (a <= b)
return{a);
else
return{b);
}

(hy int smaller(int, int);

main()

{
int n, 1 = 0;
int a(100], b[100], min[100];
printf("To STOP, enter 0 for each number\n");
printf{"\nPlease enter the first number: *);
scanf ("%d", &a[i]);
printf("Please enter the second number: *);
scanf("%sd", &b[1i));

CHAP. 1] INTRODUCTORY CONCEPTS

while (a[i] || b[i]) {
min[i] = smaller(af[i], b[il]);

printf(*\nPlease enter the first number: ");
scanf ("%d", &a[++i]);

printf("Please enter the second number: *);
scanf (*sd*, &b[i]);

}
n=--ij;

printf(*\nSummary of Results\n\n");
for (1 = 0; 1 <= n; ++i)
printf(*a =% b = %d min = %d\n"*, a[i], b[i], min[i]);
}

int smaller(int a, int b)

{
if (a <= b)
return(a);
else
return(b);

23

Chapter 2

C Fundamentals

This chapter is concerned with the basic elements used to construct simple C statements. These elements
include the C character set, identifiers and keywords, data types, constants, variables and arrays, declarations,
expressions and statements. We will see how these basic elements can be combined to form more
comprehensive program components.

Some of this material is rather detailed and therefore somewhat difficult to absorb, particularly by an
inexperienced programmer. Remember, however, that the purpose of this material is to introduce certain basic
concepts and to provide some necessary definitions for the topics that follow in the next few chapters.
Therefore, when reading this material for the first time, you need only acquire a general familiarity with the
individual topics. A more comprehensive understanding will come later, from repeated references to this
material in subsequent chapters.

2.1 THE C CHARACTER SET

C uses the uppercase letters A to Z, the lowercase letters a to z, the digits O to 9, and certain special characters
as building blocks to form basic program elements (e.g., constants, variables, operators, expressions, etc.).
The special characters are listed below.

+ - * / = % & #

! ? - » : -~ \ [

< > () [] { }
; .) _ (blank space)

Most versions of the language also allow certain other characters, such as @ and $, to be included within
strings and comments.

C uses certain combinations of these characters, such as \b, \n and \t, to represent special conditions such
as backspace, newline and horizontal tab, respectively. These character combinations are known as escape
sequences. We will discuss escape sequences in Sec. 2.4. For now we simply mention that each escape
sequence represents a single character, even though it is written as two or more characters.

2.2 IDENTIFIERS AND KEYWORDS

Identifiers are names that are given to various program elements, such as variables, functions and arrays.
Identifiers consist of letters and digits, in any order, except that the first character must be a letter. Both
upper- and lowercase letters are permitted, though common usage favors the use of lowercase letters for most
types of identifiers. Upper- and lowercase letters are not interchangeable (i.e., an uppercase letter is not
equivalent to the corresponding lowercase letter.) The underscore character (_) can also be included, and is
considered to be a letter. An underscore is often used in the middle of an identifier. An identifier may also
begin with an underscore, though this is rarely done in practice.

EXAMPLE 2.1 The following names are valid identifiers.

X y12 sum_1 _temperature

names area tax_rate TABLE

24

CHAP. 2] C FUNDAMENTALS 25

The following names are not valid identifiers for the reasons stated.

4th The first character must be a letter.
"x" Illegal characters (*).

order-no Illegal character (-).

error flag Illegal character (blank space).

An identifier can be arbitrarily long. Some implementations of C recognize only the first eight characters,
though most implementations recognize more (typically, 31 characters). Additional characters are carried
along for the programmer’s convenience.

EXAMPLE 2.2 The identifiers file_manager and file_management are both grammatically valid. Some
compilers may be unable to distinguish between them, however, because the first eight letters are the same for each
identifier. Therefore, only one of these identifiers should be used in a single C program.

As a rule, an identifier should contain enough characters so that its meaning is readily apparent. On the
other hand, an excessive number of characters should be avoided.

EXAMPLE 2.3 A C program is being written to calculate the future value of an investment. The identifiers value or
future_value are appropriate symbolic names. However, v or fv would probably be too brief, since the intended
representation of these identifiers is not clear. On the other hand, the identifier future_value_of_an_investment
would be unsatisfactory because it is too long and cumbersome.

There are certain reserved words, called keywords, that have standard, predefined meanings in C. These
keywords can be used only for their intended purpose; they cannot be used as programmer-defined identifiers.
The standard keywords are

auto extern sizeof
break floatn static
case for struct
char goto switch
const if typedef
continue int union
default ’ long unsigned
do register void
double return volatile
else short while
enum signed

Some compilers may also include some or all of the following keywords.

ada far near
asm fortran pascal
entry huge

Some C compilers may recognize other keywords. Consult a reference manual to obtain a complete list
of keywords for your particular compiler.

Note that the keywords are all lowercase. Since uppercase and lowercase characters are not equivalent, it
is possible to utilize an uppercase keyword as an identifier. Normally, however, this is not done, as it is
considered a poor programming practice.

26 C FUNDAMENTALS [CHAP. 2

2.3 DATA TYPES

C supports several different types of data, each of which may be represented differently within the computer’s
memory. The basic data types are listed below. Typical memory requirements are also given. (The memory
requirements for each data type will determine the permissible range of values for that data type. Note that the
memory requirements for each data type may vary from one C compiler to another.)

Data T D - Typical M Requi
int integer quantity 2 bytes or one word (varies from
one compiler to another)

char single character 1 byte

float floating-point number (i.e., a number containing 1 word (4 bytes)
a decimal point and/or an exponent)

double double-precision floating-point number (i.e., more 2 words (8 bytes)
significant figures, and an exponent which may
be larger in magnitude)

C compilers written for personal computers or small minicomputers (i.e., computers whose natural word
size is less than 32 bits) generally represent a word as 4 bytes (32 bits).

The basic data types can be augmented by the use of the data type qualifiers short, long, signed and
unsigned. For example, integer quantities can be defined as short int, long int or unsigned int
(these data types are usually written simply as short, long or unsigned, and are understood to be integers).
The interpretation of a qualified integer data type will vary from one C compiler to another, though there are
some commonsense relationships. Thus, a short int may require less memory than an ordinary int or it
may require the same amount of memory as an ordinary int, but it will never exceed an ordinary int in word
length. Similarly, a 1long int may require the same amount of memory as an ordinary int or it may require
more memory, but it will never be less than an ordinary int.

If short int and int both have the same memory requirements (e.g., 2 bytes), then long int will
generally have double the requirements (e.g., 4 bytes). Or if int and 1long int both have the same memory
requiremements (e.g., 4 bytes) then short int will generally have half the memory requirements (e.g., 2
bytes). Remember that the specifics will vary from one C compiler to another.

An unsigned int has the same memory requirements as an ordinary ist. However, in the case of an
ordinary int (or a short int or a long int), the leftmost bit is reserved for the sign. With an unsigned
int, all of the bits are used to represent the numerical value. Thus, an unsigned int can be approximately
twice as large as an ordinary int (though, of course, negative values are not permitted). For example, if an
ordinary int can vary from —32,768 to +32,767 (which is typical for a 2-byte int), then an unsigned int
will be allowed to vary from 0 to 65,535. The unsigned qualifier can also be applied to other qualified ints,
e.g., unsigned short intorunsigned long int.

The char type is used to represent individual characters. Hence, the char type will generally require
only one byte of memory. Each char type has an equivalent integer interpretation, however, so that a char is
a really a special kind of short integer (see Sec. 2.4). With most compilers, a char data type will permit a
range of values extending from 0 to 255. Some compilers represent the char data type as having a range of
values extending from —128 to +127. There may also be unsigned char data (with typical values ranging
from 0 to 255), or signed char data (with values ranging from —128 to +127).

Some compilers permit the qualifier 1ong to be applied to float or to double, e.g., long float, or
long double. However, the meaning of these data types will vary from one C compiler to another. Thus,
long float may be equivalent to double. Moreover, long double may be equivalent to double, or it
may refer to a separate, “‘extra-large” double-precision data type requiring more than two words of memory.

Two additional data types, void and enum, will be introduced later in this book (void is discussed in Sec.
7.2; enunm is discussed in Sec. 14.1).

CHAP. 2] C FUNDAMENTALS 27

Every identifier that represents a number or a character within a C program must be associated with one
of the basic data types before the identifier appears in an executable statement. This is accomplished via a
type declaration, as described in Sec. 2.6.

2.4 CONSTANTS

There are four basic types of constants in C. They are integer constants, floating-point constants, character
constants and string constants (there are also enumeration constants, which are discussed in Sec. 14.1).
Moreover, there are several different kinds of integer and floating-point constants, as discussed below.

Integer and floating-point constants represent numbers. They are often referred to collectively as
numeric-type constants. The following rules apply to all numeric-type constants.

1. Commas and blank spaces cannot be included within the constant.

2. The constant can be preceded by a minus (-) sign if desired. (Actually the minus sign is an operator that
changes the sign of a positive constant, though it can be thought of as a part of the constant itself.)

3. The value of a constant cannot exceed specified minimum and maximum bounds. For each type of
constant, these bounds will vary from one C compiler to another.

Let us consider each type of constant individually.
Integer Constants

An integer constant is an integer-valued number. Thus it consists of a sequence of digits. Integer constants
can be written in three different number systems: decimal (base 10), octal (base 8) and hexadecimal (base 16).
Beginning programmers rarely, however, use anything other than decimal integer constants.

A decimal integer constant can consist of any combination of digits taken from the set O through 9. If the
constant contains two or more digits, the first digit must be something other than 0.

EXAMPLE 24 Several valid decimal integer constants are shown below.

0 1 743 5280 32767 9999

The following decimal integer constants are written incorrectly for the reasons stated.

12,245 illegal character (,).
36.0 illegal character (.).
10 20 30 illegal character (blank space).
123-45-6789 illegal character (-).
0900 the first digit cannot be a zero.

An octal integer constant can consist of any combination of digits taken from the set O through 7.
However the first digit must be 0, in order to identify the constant as an octal number.

EXAMPLE 2.5 Several valid octal integer constants are shown below,
0 01 0743 077777
The following octal integer constants are written incorrectly for the reasons stated.

743 Does not begin with 0.
05280 Illegal digit (8).
0777.777 Illegal character (.).

28 C FUNDAMENTALS [CHAP. 2

A hexadecimal integer constant must begin with either Ox or 0OX. It can then be followed by any
combination of digits taken from the sets O through 9 and a through f (either upper- or lowercase). Note that
the letters a through f (or A through F) represent the (decimal) quantities 10 through 15, respectively.

EXAMPLE 2.6 Several valid hexadecimal integer constants are shown below.
Ox 0X1 OX7FFF Oxabed

The following hexadecimal integer constants are written incorrectly for the reasons stated.

0X12.34 [ltegal character (.).
0BE38 Does not begin with 0x or 0X.
Ox.4bff [llegal character (.).
OXDEFG Illegal character (G).

The magnitude of an integer constant can range from zero to some maximum value that varies from one
computer to another (and from one compiler to another, on the same computer). A typical maximum value for
most personal computers and many minicomputers is 32767 decimal (equivalent to 77777 octal or 7fff
hexadecimal), which is 2!% — 1. Mainframe computers generally permit larger values, such as 2,147,483,647
(which is 23! = 1).* You should determine the appropriate value for the version of C used with your particular
computer.

Unsigned and Long Integer Constants

Unsigned integer constants may exceed the magnitude of ordinary integer constants by approximately a factor
of 2, though they may not be negative." An unsigned integer constant can be identified by appending the
letter U (either upper- or lowercase) to the end of the constant.

Long integer constants may exceed the magnitude of ordinary integer constants, but require more memory
within the computer. With some computers (and/or some compilers), a long integer constant will
automatically be generated simply by specifying a quantity that exceeds the normal maximum value. It is
always possible, however, to create a long integer constant by appending the letter L (either upper- or
lowercase) to the end of the constant.

An unsigned long integer may be specified by appending the letters UL to the end of the constant. The
letters may be written in either upper- or lowercase. However, the U must precede the L.

EXAMPLE 2.7 Several unsigned and long integer constants are shown below.

Constant Number System

50000V decimal (unsigned)
123456789L decimal (long)
123456789UL decimal (unsigned long)
0123456L octal (long)

0777777V octal (unsigned)

0X50000U hexadecimal (unsigned)
OXFFFFFUL hexadecimal (unsigned long)

* Suppose a particular computer uses a w-bit word. Then an ordinary integer quantity may fall within the range -2~ lo+2w-1-1,
whereas an unsigned integer quantity may vary from 0to 2% - 1. A short integer may substitute w/2 for w, and a long integer may
substitute 2w for w. These rules may vary from one computer to another.

CHAP. 2] C FUNDAMENTALS 29

The maximum permissible values of unsigned and long integer constants will vary from one computer
(and one compiler) to another. With some computers, the maximum permissible value of a long integer
constant may be the same as that for an ordinary integer constant; other computers may allow a long integer
constant to be much larger than an ordinary integer constant. You are again advised to determine the
appropriate values for your particular version of C.

Floating-Point Constants

A floating-point constant is a base-10 number that contains either a decimal point or an exponent (or both).

EXAMPLE 2.8 Several valid floating-point constants are shown below.

0. 1. 0.2 827.602
50000. 0.000743 12.3 315.0066
2E-8 0.006e-3 1.6667E+8 .12121212e12

The following are not valid floating-point constants for the reasons stated.

1 Either a decimal point or an exponent must be present.

1,000.0 1llegal character (,).

2E+10.2 The exponent must be an integer quantity (it cannot contain a decimal point).
3E 10 Illegal character (blank space) in the exponent.

If an exponent is present, its effect is to shift the location of the decimal point to the right, if the exponent
is positive, or to the left, if the exponent is negative. If a decimal point is not included within the number, it is
assumed to be positioned to the right of the last digit.

The interpretation of a floating-point constant with an exponent is essentially the same as scientific
notation, except that the base 10 is replaced by the letter E (or e). Thus, the number 1.2 x 10~3 would be
written as 1.2E-3 or 1.2e-3. This is equivalentto 0.12e-2, or 12e-4, etc.

EXAMPLE 2.9 The quantity 3 x 105 can be represented in C by any of the following floating-point constants.

300000. 3e5 3e+5 3E5 3.0e+
.3e6 0.3E6 30E4 30.E+4 300e3

Similarly, the quantity 5.026 x 10717 can be represented by any of the following floating-point constants.

5.026E-17 .5026e-16 50.26e-18 .0005026E-13

Floating-point constants have a much greater range than integer constants. Typically, the magnitude of a
floating-point constant might range from a minimum value of approximately 3.4E-38 to a maximum of
3.4E+38. Some versions of the language permit floating-point constants that cover a wider range, such as
1.7E-308 to 1.7E+308. Also, the value 0.0 (which is less than either 3.4E-38 or 1.7E-308) is a valid
floating-point constant. You should determine the appropriate values for the version of C used on your
particular computer.

Floating-point constants are normally represented as double-precision quantities in C. Hence, each
floating-point constant will typically occupy 2 words (8 bytes) of memory. Some versions of C permit the
specification of a “single-precision,” floating-point constant, by appending the letter F (in either upper- or
lowercase) to the end of the constant (e.g., 3E5F). Similarly, some versions of C permit the specification of a
“long” floating-point constant, by appending the letter L (upper- or lowercase) to the end of the constant (e.g.,
0.123456789E-33L).

30 C FUNDAMENTALS [CHAP.2

The precision of floating-point constants (i.e, the number of significant figures) will vary from one
version of C to another. Virtually all versions of the language permit at least six significant figures, and some
versions permit as many as eighteen significant figures. You should determine the appropriate number of
significant figures for your particular version of C.

Numerical Accuracy

It should be understood that integer constants are exact quantities, whereas floating-point constants are
approximations. The reasons for this are beyond the current scope of discussion. However, you should
understand that the floating-point constant 1.0 might be represented within the computer’s memory as
0.98999999. . ., even though it might appear as 1.0 when it is displayed (because of automatic rounding).
Therefore floating-point values cannot be used for certain purposes, such as counting, indexing, etc., where
exact values are required. We will discuss these restrictions as they arise, in later chapters of this book.

Character Constants
A character constant is a single character, enclosed in apostrophes (i.e., single quotation marks).
EXAMPLE 2.10 Several character constants are shown below.
‘A X! ‘3! ' '
Notice that the last constant consists of a blank space, enclosed in apostrophes.

Character constants have integer values that are determined by the computer’s particular character set.
Thus, the value of a character constant may vary from one computer to another. The constants themselves,
however, are independent of the character set. This feature eliminates the dependence of a C program on any
particular character set (more about this later).

Most computers, and virtually all personal computers, make use of the ASCII (i.e., American Standard
Code for Information Interchange) character set, in which each individual character is numerically encoded
with its own unique 7-bit combination (hence a total of 27 = 128 different characters). Table 2-1 contains the
ASCII character set, showing the decimal equivalent of the 7 bits that represent each character. Notice that the
characters are ordered as well as encoded. In particular, the digits are ordered consecutively in their proper
numerical sequence (0 to 9), and the letters are arranged consecutively in their proper alphabetical order, with
uppercase characters preceding lowercase characters. This allows character-type data items to be compared
with one another, based upon their relative order within the character set.

EXAMPLE 2.11 Several character constants and their corresponding values, as defined by the ASCII character set, are
shown below.

Constant Value
A 65
'x' 120
'3’ 51
' 63

' 32

These values will be the same for all computers that utilize the ASCII character set. The values will be different,
however, for computers that utilize an alternate character set.

IBM mainframe computers, for example, utilize the EBCDIC (i.e., Extended Binary Coded Decimal Information
Code) character set, in which each individual character is numerically encoded with its own unique 8-bit combination.
The EBCDIC character set is distinctly different from the ASCII character set.

CHAP. 2] C FUNDAMENTALS 31

Table 2-1 The ASCII Character Set

ASCII ASCII ASCII ASCII
Value Character Value Character Value Character Value Character
0 NUL 32 (blank) 64 a 96
1 SOH 33 ! 65 A 97 a
2 STX 34 " 66 B 98 b
3 ETX 35 # 67 c 99 [
4 EOT 36 $ 68 D 100 d
5 ENQ 37 % 69 E 101 e
6 ACK 38 & 70 F 102 f
7 BEL 39 ! 71 G 103 o]
8 BS 40 (72 H 104 h
9 HT 41) 73 I 105 i
10 LF 42 * 74 J 106 j
11 vT 43 + 75 K 107 K
12 FF 44 s 76 L 108 1
13 CR 45 - 77 M 109 m
14 SO 46 . 78 N 110 n
15 SI 47 / 79 0 111 o}
16 DLE 48 0 80 P 112 p
17 DC1 49 1 81 Q 113 q
18 DC2 50 2 82 R 114 r
19 DC3 51 3 83 S 115]
20 DC4 52 4 84 T 116 t
21 NAK 53 5 85 U 117 u
22 SYN 54 6 86 v 118 v
23 ETB 55 7 87 w 119 w
24 CAN 56 8 88 X 120 X
25 EM 57 9 89 Y 121 y
26 suB 58 : 90 4 122 z
27 ESC 59 H 91 [123 {
28 FS 60 < 92 \ 124 |
29 GS 61 = 93] 125 }
30 RS 62 > 94 - 126 -
31 uUs 63 ? 95 _ 127 DEL

The first 32 characters and the last character are control characters. Usually, they are not displayed. However, some
versions of C (some computers) support special graphics characters for these ASCII values. For example, 001 may
represent the character &, 002 may represent 8, and so on.

Escape Sequences

Certain nonprinting characters, as well as the backslash (\) and the apostrophe ('), can be expressed in terms
of escape sequences. An escape sequence always begins with a backward slash and is followed by one or
more special characters. For example, a line feed (LF), which is referred to as a newline in C, can be
represented as \n. Such escape sequences always represent single characters, even though they are written in
terms of two or more characters.

The commonly used escape sequences are listed below.

32 C FUNDAMENTALS [CHAP. 2

Character Escape Sequence ASCII Value
bell (alert) \a 007
backspace \b 008
horizontal tab \t 009
vertical tab \v 011
newline (line feed) \n 010
form feed \f 012
carriage return \r 013
quotation mark () \" 034
apostrophe (’) \! 039
question mark (?) \? 063
backslash (\) \\ 092
null \0 000

EXAMPLE 2.12 Shown below are several character constants, expressed in terms of escape sequences.
|\n| I\.tl I\bl |\|l 1\\1 l\ul
Note that the last three escape sequences represent an apostrophe, a backslash and a quotation mark, respectively.

Of particular interest is the escape sequence \0. This represents the null character (ASCII 000), which is
used to indicate the end of a string (see below). Note that the null character constant ' \0"' is not equivalent to
the character constant 'O "'.

An escape sequence can also be expressed in terms of one, two or three octal digits which represent
single-character bit patterns. The general form of such an escape sequence is \ 000, where each o represents
an octal digit (0 through 7). Some versions of C also allow an escape sequence to be expressed in terms of
one or more hexadecimal digits, preceded by the letter x. The general form of a hexadecimal escape sequence
is \xhh, where each h represents a hexadecimal digit (0 through 9 and a through f). The letters can be either
upper- or lowercase. The use of an octal or hexadecimal escape sequence is usually less desirable than writing
the character constant directly, however, since the bit patterns may be dependent upon some particular
character set.

EXAMPLE 2.13 The letter A is represented by the decimal value 065 in the ASCII character set. This value is
equivalent to the octal value 101. (The equivalent binary bit pattern is 001 000 001.) Hence the character constant ‘A’
can be expressed as the octal escape sequence ' \101".

In some versions of C, the letter A can also be expressed as a hexadecimal escape sequence. The hexadecimal
equivalent of the decimal value 65 is 41. (The equivalent binary bit pattern is 0100 0001.) Hence the character constant
‘A’ can be expressed as ' \x41',oras '\X41'.

It should be understood that the preferred way to represent this character constant is simply 'A'. In this form, the
character constant is not dependent upon its equivalent ASCII representation.

Escape sequences can only be written for certain special characters, such as those listed above, or in terms

of octal or hexadecimal digits. If a backslash is followed by any other character, the result may be
unpredictable. Usually, however, it will simply be ignored.

String Constants

A string constant consists of any number of consecutive characters (including none), enclosed in (double)
quotation marks.

CHAP. 2] C FUNDAMENTALS 33

EXAMPLE 2.14 Several string constants are shown below.

*green” *washington, D.C. 20005" "270-32-3456"
"$19.95" "THE CORRECT ANSWER IS:* “2*(I+3)/J"
* " “Line 1\nLine 2\nLine 3" "

Note that the string constant *Line 1\nLine 2\nLine 3" extends over three lines, because of the newline characters
that are embedded within the string. Thus, this string would be displayed as

Line 1
Line 2
Line 3

Also, notice that the string * * is a nul/l (empty) string.

Sometimes certain special characters (e.g., a backslash or a quotation mark) must be included as a part of
a string constant. These characters must be represented in terms of their escape sequences. Similarly, certain
nonprinting characters (e.g., tab, newline) can be included in a string constant if they are represented in terms
of their corresponding escape sequences.

EXAMPLE 2.15 The following string constant includes three special characters that are represented by their
corresponding escape sequences.

"\tTo continue, press the \"RETURN\" key\n"

The special characters are \t (horizontal tab), \ * (double quotation marks, which appears twice), and \n (newline).

The compiler automatically places a null character (10) at the end of every string constant, as the last
character within the string (before the closing double quotation mark). This character is not visible when the
string is displayed. However, we can easily examine the individual characters within a string, and test to see
whether or not each character is a null character (we will see how this is done in Chap. 6). Thus, the end of
every string can be readily identified. This is very helpful if the string is scanned on a character-by-character
basis, as is required in many applications. Also, in many situations this end-of-string designation eliminates
the need to specify a maximum string length.

EXAMPLE 2.16 The string constant shown in Example 2.15 actually contains 38 characters. This includes five blank
spaces, four special characters (horizontal tab, two quotation marks and newline) represented by escape sequences, and the
null character (\0) at the end of the string.

Remember that a character constant (e.g., 'A') and the corresponding single-character string constant
("A") are not equivalent. Also remember that a character constant has an equivalent integer value, whereas a
single-character string constant does not have an equivalent integer value and, in fact, consists of two
characters — the specified character followed by the null character (\0).

EXAMPLE 2.17 The character constant 'w' has an integer value of 119 in the ASCII character set. It does not have a
null character at the end. In contrast, the string constant *w*" actually consists of two characters — the lowercase letter w
and the null character \0. This constant does not have a corresponding integer value.

2.5 VARIABLES AND ARRAYS

A variable is an identifier that is used to represent some specified type of information within a designated
portion of the program. In its simplest form, a variable is an identifier that is used to represent a single data
item; i.e., a numerical quantity or a character constant. The data item must be assigned to the variable at some
point in the program. The data item can then be accessed later in the program simply by referring to the
variable name.

34 C FUNDAMENTALS [CHAP. 2

A given variable can be assigned different data items at various places within the program. Thus, the
information represented by the variable can change during the execution of the program. However, the data
type associated with the variable cannot change.

EXAMPLE 2.18 A C program contains the following lines.

int a, b, c;

char d;
a = 3;
b = 5;
cC=a+b,;
d4="'a';
a=4,;
b= 2;
c=a - b;
d ='W,

The first two lines are fype declarations, which state that a, b and c are integer variables, and that d is a char-type
variable. Thus a, b and ¢ will each represent an integer-valued quantity, and d will represent a single character. These
type declarations will apply throughout the program (more about this in Sec. 2.6).

The next four lines cause the following things to happen: the integer quantity 3 is assigned to a, 5 is assigned to b,
and the quantity represented by the sum a + b (i.e., 8) is assigned to c. The character ‘a’ is then assigned to d.

In the third line within this group, notice that the values of the variables a and b are¢ accessed simply by writing the
variables on the right-hand side of the equal sign.

The last four lines redefine the values assigned to the variables as follows: the integer quantity 4 is assigned to a,
replacing the earlier value, 3; then 2 is assigned to b, replacing the earlier value, 5; then the difference between a and b
(i.e., 2) is assigned to c, replacing the earlier value, 8. Finaily, the character ‘W' is assigned to d, replacing the earlier
character, 'a’. '

The array is another kind of variable that is used extensively in C. An array is an identifier that refers to a
collection of data items that all have the same name. The data items must all be of the same type (e.g., all
integers, all characters, etc.). The individual data items are represented by their corresponding array_elements
(i.e., the first data item is represented by the first array element, etc.). The individual array elements are
distinguished from one another by the value that is assigned to a subscript.

EXAMPLE 2.19 Suppose that x is a 10-element array. The first element is referred to as x[0], the second as x[1], and
so on. The last element will be x{9].

The subscript associated with each element is shown in square braces. Thus, the value of the subscript for the first
element is O, the value of the subscript for the second element is 1, and so on. For an n-element array, the subscripts
always range from O to n-1.

There are several different ways to categorize arrays (e.g., integer arrays, character arrays, one-
dimensional arrays, multi-dimensional arrays). For now, we will confine our attention to only one type of
array: the one-dimensional, char-type array (often called a one-dimensional character array). This type of
array is generally used to represent a string. Each array element will represent one character within the string.
Thus, the entire array can be thought of as an ordered list of characters.

Since the array is one-dimensional, there will be a single subscript (sometimes called an index) whose
value refers to individual array elements. If the array contains n elements, the subscript will be an integer
quantity whose values range from O to n—-1. Note that an n-character string will require an (n+1)-element
array, because of the null character (10) that is automatically placed at the end of the string.

CHAP. 2] C FUNDAMENTALS 35

EXAMPLE 2.20 Suppose that the string *California® is to be stored in a one-dimensional character array called
letter. Since *California” contains 10 characters, letter will be an 11-element array. Thus, letter[0] will
represent the letter C, letter[1] will represent a, and so on, as summarized below. Note that the last (i.e., the 11th) array
element, letter([10], represents the null character which signifies the end of the string.

Element Subscript Array Corresponding Data ltem
Number Value Element (String Character)

letter([0]
letter[1]
letter[2]
letter(3]
letter(4)
letter[5]
letter[6]
letter[7]
letter([8}
letter[9}
letter([10)

- =4 O O NN L~ WD =
B 3 T 0 DO

- O
= O ® N OO0 s~ WN =0

o
—
o

From this list we can determine, for example, that the 5th array element, letter[4], represents the letter f, and so on.
The array elements and their contents are shown schematically in Fig. 2.1.

Le [afafifrJofrfn]ilalfhr]

Subscript: 0 1 2 3 4 5 6 7 8 9 10

An 11-element character array
Fig. 2.1

We will discuss arrays in much greater detail in Chaps. 9 and 10.

2.6 DECLARATIONS

A declaration associates a group of variables with a specific data type. All variables must be declared before
they can appear in executable statements.

A declaration consists of a data type, followed by one or more variable names, ending with a semicolon.
(Recall that the permissible data types are discussed in Sec. 2.3.) Each array variable must be followed by a
pair of square brackets, containing a positive integer which specifies the size (i.e., the number of elements) of
the array.

EXAMPLE 2.21 A C program contains the following type declarations.
int a, b, ¢;
float rooti1, root2;

char flag, text[80];

Thus, a, b and ¢ are declared to be integer variables, root1 and root2 are floating-point variables, flag is a char-type
variable and text is an 80-clement, char-type array. Note the square brackets enclosing the size specification for text.

36 C FUNDAMENTALS [CHAP. 2

These declarations could also have been written as follows.

int a;

int b;

int c;

float roott;
float root2;
char flag,;
char text[80};

This form may be useful if each variable is to be accompanied by a comment cxplaining its purpose. In small programs,
however, items of the same type are usually combined in a single declaration.

Integer-type variables can be declared to be short integer for smaller integer quantities, or long integer for
larger integer quantities. (Recall that some C compilers allocate less storage space to short integers, and
additional storage space to long integers.) Such variables are declared by writing short int and long int,
or simply short and long, respectively.

EXAMPLE 2.22 A C program contains the following type declarations.

short int a, b, c;
long int r, s, t;
int p, q;

Some compilers will allocate less storage space to the short integer variables a, b and ¢ than to the integer variables p
and q. Typical values are two bytes for each short integer variable, and four bytes (one word) for each ordinary integer
variable. The maximum permissible values of a, b and ¢ will be smaller than the maximum permissible values of p and q
when using a compiler of this type.

Similarly, some compilers will allocate additional storage space 1o the long integer variables r, s and t than to the
integer variables p and q. Typical values are two words (8 bytes) for each long integer variable, and one word (4 bytes)
for each ordinary integer variable. The maximum permissible values of r, s and t will be larger than the maximum
permissible values of p and @ when using one of these compilers.

The above declarations could have been written as

short a, b, c;
long r, s, t;
int p, q;

Thus, short and short int are equivalent, as are long and long int.

An integer variable can also be declared to be unsigned, by writing unsigned int, or simply
unsigned, as the type indicator. Unsigned integer quantities can be larger than ordinary integer quantities
(approximately twice as large), but they cannot be negative.

EXAMPLE 2.23 A C program contains the following type declarations.

int a, b;
unsigned x, y;

The unsigned variables x and y can represent values that are twice as large as the values represented by a and b. However,
x and y cannot represent negative quantities. For example, if the computer uses 2 bytes for each integer quantity, then a
and b may take on values that range from —32768 to +32767, whereas the values of x and y may vary from 0 to +65535.

CHAP. 2] C FUNDAMENTALS 37

Floating-point variables can be declared to be double precision by using the type indicator double or
long float rather than float. In most versions of C, the exponent within a double-precision quantity is
larger in magnitude than the exponent within an ordinary floating-point quantity. Hence, the quantity
represented by a double-precision variable can fall within a greater range. Moreover, a double-precision
quantity will usually be expressed in terms of more significant figures.

EXAMPLE 2.24 A C program contains the following type declarations.

float c1, c2, ¢3;
double rooti, root2;

With a particular C compiler, the double-precision variables root1 and root2 represent values that can vary (in
magnitude) from approximately 1.7 x 107308 15 1.7 x 10*398, However, the floating-point variables ¢1, ¢2 and ¢3 are
restricted (in magnitude) to the range 3.4 x 10738 10 3.4 x 1038, Furthermore, the values represented by root1 and root2
will each be expressed in terms of 18 significant figures, whereas the values represented by c1, ¢2 and ¢3 will each be
expressed in terms of only 6 significant figures.

The last declaration could have been written

long float rooti, root2;
though the original form (i.e., double roott, root2;)is more common.

Initial values can be assigned to variables within a type declaration. To do so, the declaration must
consist of a data type, followed by a variable name, an equal sign (=) and a constant of the appropriate type. A
semicolon must appear at the end, as usual.

EXAMPLE 2.25 A C program contains the following type declarations.

int c = 12;

char star = '*';

float sum = 0.;

double factor = 0.21023e-6;

Thus, ¢ is an integer variable whose initial value is 12, star is a char-type variable initially assigned the character '*"',
sum is a floating-point variable whose initial value is 0., and factor is a double-precision variable whose initial value is

0.21023 x 1076,

A character-type array can also be initialized within a declaration. To do so, the array is usually written
without an explicit size specification (the square brackets are empty). The array name is then followed by an
equal sign, the string (enclosed in quotes), and a semicolon. This is a convenient way to assign a string to a
character-type array.

EXAMPLE 2.26 A C program contains the following type declaration.
char text[] = "California‘;

This declaration will cause text to be an 11-element character array. The first 10 elements will represent the 10
characters within the word California, and the 11th element will represent the null character (\0) which is automatically

added at the end of the string.
The declaration could also have been written

char text[11] = “California";

38 C FUNDAMENTALS [CHAP. 2

where the size of the array is explicitly specified. In such situations it is important, however, that the size be specified
correctly. If the size is too small, e.g.,

char text{10] = *California‘;
the characters at the end of the string (in this case, the null character) will be lost. If the size is too large, e.g.,
char text[20] = “California®;

the extra array elements may be assigned zeros, or they may be filled with meaningless characters.

Array declarations that include the assignment of initial values can only appear in certain places within a
C program (see Chap. 9).

In Chap. 8 we shall see that variables can be categorized by storage class as well as by data type. The
storage class specifies the portion of the program within which the variables are recognized. Moreover, the
storage class associated with an array determines whether or not the array can be initialized. This is explained
in Chap. 9.

2.7 EXPRESSIONS

An expression represents a single data item, such as a number or a character. The expression may consist of a
single entity, such as a constant, a variable, an array element or a reference to a function. It may also consist
of some combination of such entities, interconnected by one or more operators. The use of expressions
involving operators is particularly common in C, as in most other programming languages.

Expressions can also represent logical conditions that are either true or false. However, in C the
conditions true and false are represented by the integer values 1 and 0, respectively. Hence logical-type
expressions really represent numerical quantities.

EXAMPLE 2.27 Several simple expressions are shown below.

o x
" I
[
+
lo g

x
A
n

y
y

"

X =

++1

The first expression involves use of the addition operator (+). This expression represents the sum of the values
assigned to the variables a and b.

The second expression involves the assignment operator (=). In this case, the expression causes the value
represented by y to be assigned to x. We have already encountered the use of this operator in several earlier examples (see
Examples 1.6 through 1.13, 2.25 and 2.26). C includes several additional assignment operators, as discussed in Sec. 3.4.

In the third line, the value of the expression (a + b) is assigned to the variable ¢c. Note that this combines the
features of the first two expressions (addition and assignment).

The fourth expression will have the value 1 (true) if the value of x is less than or equal to the value of y. Otherwise,
the expression will have the value 0 (false). In this expression, <= is a relational operator that compares the values of the
variables x and y.

The fifth expression is a test for equality (compare with the second expression, which is an assignment expression).
Thus, the expression will have the value t (true) if the value of x is equal to the value of y. Otherwise, the expression will
have the value O (false).

CHAP. 2] C FUNDAMENTALS 39

The last expression causes the value of the variable i to be increased by 1 (i.e., incremented). Thus, the expression is
equivalent to

The operator ++, which indicates incrementing, is called a unary operator because it has only one operand (in this case,
the variable 1). C includes several other operators of this type, as discussed in Sec. 3.2.

The C language includes many different kinds of operators and expressions. Most are described in detail
in Chap. 3. Others will be discussed elsewhere in this book, as the need arises.

2.8 STATEMENTS

A statement causes the computer to carry out some action. There are three different classes of statements in C.
They are expression statements, compound statements and control statements.

An expression statement consists of an expression followed by a semicolon. The execution of an
expression statement causes the expression to be evaluated.

EXAMPLE 2.28 Several expression statements are shown below.

a=3;
c =a+b;
++1i;

printf("Area = %f", area);

3
The first two expression statements are assignment-type statements. Each causes the value of the expression on the right
of the equal sign to be assigned to the variable on the left. The third expression statement is an incrementing-type
statement, which causes the value of i to increase by 1.

The fourth expression statement causes the printf function to be evaluated. This is a standard C library function
that writes information out of the computer (more about this in Sec. 3.6). In this case, the message Area = will be
displayed, followed by the current value of the variable area. Thus, if area represents the value 100., the statement will
generate the message

Area = 100,

The last expression statement does nothing, since it consists of only a semicolon. It is simply a mechanism for
providing an empty expression statement in places where this type of statement is required. Consequently, it is called a
null statement.

A compound statement consists of several individual statements enclosed within a pair of braces { }.
The individual statements may themselves be expression statements, compound statements or control
statements. Thus, the compound statement provides a capability for embedding statements within other
statements. Unlike an expression statement, a compound statement does not end with a semicolon.

EXAMPLE 2.29 A typical compound statement is shown below.

pi = 3.141593;
circumference = 2. * pi * radius;
area = pi * radius * radius;

40 C FUNDAMENTALS [CHAP. 2

This particular compound statement consists of three assignment-type expression statements, though it is considered a
single entity within the program in which it appears. Note that the compound statement does not end with a semicolon
after the brace.

Control statements are used to create special program features, such as logical tests, loops and branches.
Many control statements require that other statements be embedded within them, as illustrated in the following
example.

EXAMPLE 2.30 The following control statement creates a conditional loop in which several actions are executed
repeatedly, until some particular condition is satisfied.

while (count <= n) {
printf("x = *);
scanf("%f", &x);
sum += x;
++count;

}

This statement contains a compound statement, which in turn contains four expression statements. The compound
statement will continue to be executed as long as the value of count does not exceed the value of n, Note that count
increases in value during each pass through the loop.

Chapter 6 presents a detailed discussion of control statements.

2.9 SYMBOLIC CONSTANTS

A symbolic constant is a name that substitutes for a sequence of characters. The characters may represent a
numeric constant, a character constant or a string constant. Thus, a symbolic constant allows a name to appear
in place of a numeric constant, a character constant or a string. When a program is compiled, each occurrence
of a symbolic constant is replaced by its corresponding character sequence.

Symbolic constants are usually defined at the beginning of a program. The symbolic constants may then
appear later in the program in place of the numeric constants, character constants, etc. that the symbolic
constants represent.

A symbolic constant is defined by writing

#define npame text
where name represents a symbolic name, typically written in uppercase letters, and text represents the
sequence of characters that is associated with the symbolic name. Note that text does not end with a
semicolon, since a symbolic constant definition is not a true C statement. Moreover, if text were to end with
a semicolon, this semicolon would be treated as though it were a part of the numeric constant, character
constant or string constant that is substituted for the symbolic name.
EXAMPLE 2.31 A C program contains the following symbolic constant definitions.

#define TAXRATE 0.23

#define PI 3.141593

#define TRUE 1
#define FALSE O

#define FRIEND *"Susan*®

CHAP. 2] C FUNDAMENTALS 41

Notice that the symbolic names are written in uppercase, to distinguish them from ordinary C identifiers. Also, note that
the definitions do not end with semicolons.
Now suppose that the program contains the statement

area = PI * radius * radius;

During the compilation process, each occurrence of a symbolic constant will be replaced by its corresponding text. Thus,
the above statement will become

area = 3.141593 * radius * radius;
Now suppose that a semicolon had been (incorrectly) included in the definition for PI, i.e.,
#define PI 3.141593;
The assignment statement for area would then become
area = 3.141593; * radius * radius;

Note the semicolon preceding the first asterisk. This is clearly incorrect, and it will cause an crror in the compilation.

The substitution of text for a symbolic constant will be carried out anywhere beyond the #define
statement, except within a string. Thus, any text enclosed by (double) quotation marks will be unaffected by
this substitution process.

EXAMPLE 2.32 A C program contains the following statements.

#define CONSTANT 6.023E23
int ¢;

printf("CONSTANT = %f", c);

The printf statement will be unaffected by the symbolic constant definition, since the term “CONSTANT = %f*" is a
string constant. If, however, the printf statement were written as

printf("CONSTANT = %f", CONSTANT);
then the printf statement would become
printf ("CONSTANT = %f", 6.023E23);

during the compilation process.

Symbolic constants are not required when writing C programs. Their use is recommended, however, since
they contribute to the development of clear, orderly programs. For example, symbolic constants are more
readily identified than the information that they represent, and the symbolic names usually suggest the
significance of their associated data items. Furthermore, it is much easier to change the value of a single
symbolic constant than to change every occurrence of some numerical constant that may appear in several
places within the program.

The #define feature, which is used to define symbolic constants, is one of several features included in
the C preprocessor (i.e., a program that provides the first step in the translation of a C program into machine
language). A detailed discussion of the C preprocessor is included in Chap. 14 (see Sec. 14.6).

42

2.1
2.2

23
24
25
2.6
2.7
2.8
29
2.10

2.11

2.12

2.13
2,14
2.15

2.16
2.17
2.18

2.19

2.20
2.21
2.22

2.23

2.24
2258
2.26
2.27
2.28
2.29
2.30
2.31
2.32

2.33

C FUNDAMENTALS [CHAP. 2

Review Questions

Which characters comprise the C character set?

Summarize the rules for naming identifiers. Are uppercase letters equivalent to lowercase letters? Can digits be
included in an identifier name? Can any special characters be included?

How many characters can be included in an identifier name? Are all of these characters equally significant?
What are the keywords in C? What restrictions apply to their use?

Name and describe the four basic data types in C.

Name and describe the four data-type qualifiers. To which data types can each qualifier be applied?

Name and describe the four basic types of constants in C.

Summarize the rules that apply to all numeric-type constants.

What special rules apply to integer constants?

When writing integer constants, how are decimal constants, octal constants and hexadecimal constants
distinguished from one another?

Typically, what is the largest permissible magnitude of an integer constant? State your answer in decimal, octal
and hexadecimal.

What are unsigned integer constants? What are long integer constants? How do these constants differ from
ordinary integer constants? How can they be written and identified?

Describe two different ways that floating-point constants can be written. What special rules apply in each case?
What is the purpose of the (optional) exponent in a floating-point constant?

Typically, what is the largest permissible magnitude of a floating-point constant? Compare with an integer
constant.

How can “single-precision™ and “long” floating-point constants be written and identified?
Typically, how many significant figures are permitted in a floating-point constant?

Describe the differences in accuracy between integer and floating-point constants. Under what circumstances
should each type of constant be used?

What is a character constant? How do character constants differ from numeric-type constants? Do character
constants represent numerical values?

What is the ASCII character set? How common is its use?
What is an escape sequence? What is its purpose?

Summarize the standard escape sequences in C. Describe other, nonstandard escape sequences that are commonly
available.

What is a string constant? How do string constants differ from character constants? Do string constants represent
numerical values?

Can escape sequences be included in a string constant? Explain.

What is a variable? How can variables be characterized?

What is an array variable? How does an array variable differ from an ordinary variable?

What restriction must be satisfied by all of the data items represented by an array?

How can individual array elements be distinguished from one another?

What is a subscript? What range of values is permitted for the subscript of a one-dimensional, n-element array?
What is the purpose of a type declaration? What does a type declaration consist of?

Must all variables appearing within a C program be declared?

How are initial values assigned to variables within a type declaration? How are strings assigned to one-
dimensional, character-type arrays?

What is an expression? What kind of information is represented by an expression?

CHAP. 2] C FUNDAMENTALS 43

2.34
2.35
2.36
2.37

2.38

2.39

2.40

241

2.42

2.43

2.44

What is an operator? Describe several different types of operators that are included within the C language.
Name the three different classes of statements in C. Describe the composition of cach.
Can statements be embedded within other statements? Explain.

What is a symbolic constant? How is a symbolic constant defined? How is the definition written? Where must a
symbolic constant definition be placed within a C program?

During the compilation process, what happens to symbolic constants that appear within a C program?

Problems

Determine which of the following are valid identifiers. If invalid, cxplain why.

(a) recordi (e) $tax (h) name_and_address
(b) 1record (/) name (/) name-and-address
(c) file 3 (g) name and address (/) 123-45-6789

(d) return

Assume that your version of C can recognize only the first 8 characters of an identifier name. though identifier
names may be arbitrarily long. Which of the following pairs of identificr names arc considered to he identical and
which are distinct?

(@) name, names . (d) list1, list2
(b) address, Address (e} answer, ANSWER
(c) identifier_1, identifier_2 (/) chart, char_1

Determine which of the following numerical values are valid constants. 1f a constant is valid, specify whether it is
integer or real. Also, specify the base for each valid integer constant.

(@) 0.5 (e) 12345678 (i) 0515
(b) 27,822 () 12345678L (/) 018CDF

(¢) 9.3e12 (g) 0.8E+0.8 (k) OXBCFDAL

(dh 9.3e-12 () 0.8E 8 () 0x87e3ha

Determine which of the following are valid character constants.

(@) ‘a’ (&) "\ (hH "o

by 's' (¢ "\a' () ‘'xyz'

() “\n g 'T () '\os2'

@ '

Determine which of the following are valid string constants.

(@ '8:15 P.M.' (e) *1.3e-12*

(b)) "Red, White and Blue" (/) "NEW YORK, NY 10020"

(¢) "Name: (g) "The professor said, "Please don't sleep in class"

(d) *Chap. 3 (Cont\'d)"
Write appropriate declarations for each group of variables and arrays.

(a) Integer variables: p, q
Floating-point variables: x, y, 2
Character variables: a, b, ¢

(b) Floating-point variables: root1, root2
Long integer variable: counter
Short integer variable: flag

44

2.45

2.46

247

2.48

(¢) Integer variable: index

C FUNDAMENTALS

Unsigned integer variable: cust_no
Double-precision variables: gross, tax, net

(d) Character variables: current, last
Unsigned integer variable: count
Floating-point variable: error

(e) Character variables: first, last
80-element character array: message

Write appropriate declarations and assign the given initial values for each group of variables and arrays.

(a) Floating-point variables: a =-8.2, b = 0.005
Integer variables: x =129,y =87,z2=-22
Character variables: c1="'w', ¢2="8&'

(6) Double-precision variables: d1=2.88 x 1078, d2 = ~8.4 x 103

Integer variables: u= 711 (octal), v = ffff (hexadecimal)

(¢) Long integer variable: big = 123456789
Double-precision variable: ¢ =0.3333333333
Character variable: eol = newline character

(d) One-dimensional character array: message = *ERROR"

Explain the purpose of each of the following expressions.

(a) a-b
(&) a * (b +c)
(¢)y d a* (b+c¢)

(d) a>=b
(e) (a%5) ==

) a<(b/c)
(g) --a

[CHAP. 2

Identify whether each of the following statements is an expression statement, a compound statement or a control

statement.
(@) a* (b+c);

(b) while (a < 100) {
d=a™* (b+c¢);

++a;
}
(¢) 1if (x > 0)
y = 2.0;
else
y = 3.0;
@) {
+4X;
if (x > 0)
y = 2.0;
else
y = 3.0;
printf("sf*, y);
}

(e) {

}

0)
2.0;
6.0;

{

Write an appropriate definition for each of the following symbolic constants, as it would appear within a C

program.

CHAP. 2]

(a)
(b)
()

(@)
(e)

anSlin
FACTOR
ERROR

BEGIN
END

NAME
EOLN
COST

C FUNDAMENTALS

Text

-18
0.0001

{

}
“Sharon”
“n’
“$19.95”

435

Chapter 3

Operators and Expressions

We have already seen that individual constants, variables, array elements and function references can be
joined together by various operators to form expressions. We have also mentioned that C includes a large
number of operators which fall into several different categories. In this chapter we examine certain of these
categories in detail. Specifically, we will see how arithmetic operators, unary operators, relational and logical
operators, assignment operators and the conditional operator are used to form expressions.

The data items that operators act upon are called operands. Some operators require two operands, while
others act upon only one operand. Most operators allow the individual operands to be expressions. A few
operators permit only single variables as operands (more about this later).

3.1 ARITHMETIC OPERATORS

There are five arithmetic operators in C. They are

rator Purpose

+ addition

- subtraction

* multiplication

/ division

% remainder after integer division

The % operator is sometimes referred to as the modulus operator.

There is no exponentiation operator in C. However, there is a /ibrary function (pow) to carry out
exponentiation (see Sec. 3.6).

The operands acted upon by arithmetic operators must represent numeric values. Thus, the operands can
be integer quantities, floating-point quantities or characters (remember that character constants represent
integer values, as determined by the computer’s character set). The remainder operator (%) requires that both
operands be integers and the second operand be nonzero. Similarly, the division operator (/) requires that the
second operand be nonzero.

Division of one integer quantity by another is referred to as integer division. This operation always
results in a truncated quotient (i.e., the decimal portion of the quotient will be dropped). On the other hand, if
a division operation is carried out with two floating-point numbers, or with one floating-point number and one
integer, the result will be a floating-point quotient.

EXAMPLE 3.1 Suppose that a and b are integer variables whose values are 10 and 3, respectively. Several arithmetic
expressions involving these variables are shown below, together with their resulting values.

Expression Value
a+b 13
a-»>b 7
a*hb 30
a b 3
a%h 1

46

CHAP. 3] OPERATORS AND EXPRESSIONS 47

Notice the truncated quotient resulting from the division operation, since both operands represent integer quantities.
Also, notice the integer remainder resulting from the use of the modulus operator in the last expression.

Now suppose that vi and v2 are floating-point variables whose values are 12.5 and 2.0, respectively. Several
arithmetic expressions involving these variables are shown below, together with their resulting values.

Expression Yalue
vi + v2 14.5
vl - v2 10.5
vl * v2 25.0
vl /[v2 6.25

Finally, suppose that ¢1 and c2 are character-type variables that represent the characters P and T, respectively.
Several arithmetic expressions that make use of these variables are shown below, together with their resulting values
(based upon the ASCII character set).

Expression Faluye
ci 80
cl + c2 164
cl +c¢c2 +5 169
cl1 +c¢c2 + 'S5’ 217

Note that P is encoded as (decimal) 80, T is encoded as 84, and 5 is encoded as 53 in the ASCII character set, as shown in
Table 2-1.

If one or both operands represent negative values, then the addition, subtraction, multiplication and
division operations will result in values whose signs are determined by the usual rules of algebra. Integer
division will result in truncation toward zero; i.e., the resultant will always be smaller in magnitude than the
true quotient.

The interpretation of the remainder operation is unclear when one of the operands is negative. Most
versions of C assign the sign of the first operand to the remainder. Thus, the condition

a=((a/b)*b)+ (a%b)
will always be satisfied, regardless of the signs of the values represented by a and b.
Beginning programmers should exercise care in the use of the remainder operation when one of the

operands is negative. In general, it is best to avoid such situations.

EXAMPLE 3.2 Suppose that a and b are integer variables whose values are 11 and -3, respectively. Several arithmetic
expressions involving these variables are shown below, together with their resulting values.

Expression Value
a+b 8
a-b>b 14
a*hb -33
a/b -3
a%b 2

If a had been assigned a value of ~11 and b had been assigned 3, then the valuc of a / b would still be -3 but the
value of a % b would be —-2. Similarly, if a and b had both been assigned negative values (11 and -3, respectively),
then the value of a / b would be 3 and the value of a % b would be -2.

48

OPERATORS AND EXPRESSIONS [CHAP. 3

Note that the condition

a=((a/b)*b)+ (a%Dh)

will be satisfied in each of the above cases. Most versions of C will determine the sign of the remainder in this manner,
though this feature is unspecified in the formal definition of the language.

EXAMPLE 3.3 Here is an illustration of the results that are obtained with floating-point operands having different
signs. Let r1 and r2 be floating-point variables whose assigned values are —0.66 and 4.50. Several arithmetic
expressions involving these variables are shown below, together with their resulting values.

Expression Value
ri +r2 3.84
ri - r2 -5.16
ri * r2 -2.97
r1 / r2 -0.1466667

Operands that differ in type may undergo type conversion before the expression takes on its final value.

In general, the final result will be expressed in the highest precision possible, consistent with the data types of
the operands. The following rules apply when neither operand is unsigned.

1.

If both operands are floating-point types whose precisions differ (e.g., a float and a double), the lower-
precision operand will be converted to the precision of the other operand, and the result will be expressed
in this higher precision. Thus, an operation between a float and a double will result in a double; a
float and a long double will result in a long double; and a double and a 1long double will result
in a long double. (Note: In some versions of C, all operands of type float are automatically
converted to double.)

If one operand is a floating-point type (e.g., float, double or long double) and the other is a char or
an int (including short int or long int), the char or int will be converted to the floating-point
type and the result will be expressed as such. Hence, an operation between an int and a double will
result in a double.

If neither operand is a floating-point type but one is a long int, the other will be converted to long
int and the result will be long int. Thus, an operation between a long int and an int will result in
along int.

If neither operand is a floating-point type or a long int, then both operands will be converted to int (if
necessary) and the result will be int. Thus, an operation between a short int and an int will result in
an int.

A detailed summary of these rules is given in Appendix D. Conversions involving unsigned operands

are also explained in Appendix D.

EXAMPLE 3.4 Suppose that i is an integer variable whose value is 7, f is a floating-point variable whose valug is 5.5,
and c is a character-type variable that represents the character w. Several expressions which include the use of these
variables are shown below. Each expression involves operands of two different types. Assume that the ASCII character
set is being used.

Expression Value Type
i+t 12.5 double-precision
i+c 126 integer
i+c-'0 78 integer
(I +c)-(2*°T/5) 123.8 double-precision

Note that w is encoded as (decimal) 119 and 0 is encoded as 48 in the ASCII character set, as shown in Table 2-1.

CHAP. 3] OPERATORS AND EXPRESSIONS 49

The value of an expression can be converted to a different data type if desired. To do so, the expression
must be preceded by the name of the desired data type, enclosed in parentheses, i.e.,

(data type) expression
This type of construction is known as a cast.

EXAMPLE 3.5 Suppose that i is an integer variable whose value is 7, and f is a floating-point variable whose value is
8.5. The expression

(i +f) % 4
is invalid, because the first operand (1 + f) is floating-point rather than integer. However, the expression
((int) (1 + f)) % 4

forces the first operand to be an integer and is therefore valid, resulting in the integer remainder 3.
Note that the explicit type specification applies only to the first operand, not the entire expression.

The data type associated with the expression itself is not changed by a cast. Rather, it is the value of the
expression that undergoes type conversion wherever the cast appears. This is particularly relevant when the
expression consists of only a single variable.

EXAMPLE 3.6 Suppose that f is a floating-point variable whose value is 5.5. The expression
((int) T) % 2

contains two integer operands and is therefore valid, resulting in the integer remainder 1. Note, however, that T remains a
floating-point variable whose value is 5.5, even though the value of T was converted to an integer (5) when carrying out
the remainder operation.

The operators within C are grouped hierarchically according to their precedence (i.e., order of
evaluation). Operations with a higher precedence are carried out before operations having a lower precedence.
The natural order of evaluation can be altered, however, through the use of parentheses, as illustrated in
Example 3.5.

Among the arithmetic operators, *, / and % fall into one precedence group, and + and - fall into another.
The first group has a higher precedence than the second. Thus, multiplication, division and remainder
operations will be carried out before addition and subtraction.

Another important consideration is the order in which consecutive operations within the same precedence
group are carried out. This is known as associativity. Within each of the precedence groups described above,
the associativity is left to right. In other words, consecutive addition and subtraction operations are carried out
from left to right, as are consecutive multiplication, division and remainder operations.

EXAMPLE 3.7 The arithmetic expression
a-b/c*d

is equivalent to the algebraic formula a — [(6 / ¢) x d]. Thus, if the floating-point variables a, b, c and d have been
assigned the values 1., 2., 3. and 4., respectively, the expression would represent the value —1.666666 - - -, since

.- [(2./3)x4] = 1. - [0.666666 - - - x4.] = 1. -2.666666 - = —1.666666 - -

Notice that the division is carried out first, since this operation has a higher precedence than subtraction. The
resulting quotient is then multiplied by 4., because of left-to-right associativity. The product is then subtracted from 1.,
resulting in the final value of —1.666666 - - - .

50 OPERATORS AND EXPRESSIONS [CHAP. 3

The natural precedence of operations can be altered through the use of parentheses, thus allowing the
arithmetic operations within an expression to be carried out in any desired order. In fact, parentheses can be
nested, one pair within another. In such cases the innermost operations are carried out first, then the next
innermost operations, and so on.

EXAMPLE 3.8 The arithmetic expression
(a - b) / (¢ *d)

is equivalent to the algebraic formula (a — b) / (¢ x d). Thus, if the floating-point variables a, b, ¢ and d have been
assigned the values 1., 2., 3. and 4., respectively, the expression would represent the value —0.08333333 - - -, since

(1.-2)/(3.x4)=-1./12.=-0.08333333 - -~
Compare this result with that obtained in Example 3.7.

Sometimes it is a good idea to use parentheses to clarify an expression, even though the parentheses may
not be required. On the other hand, the use of overly complex expressions, such as that shown in the next
example, should be avoided if at all possible. Such expressions are difficult to read, and they are often written
incorrectly because of unbalanced parentheses.

EXAMPLE 3.9 Consider the arithmetic expression

2% ((1%5) *(4+(j-3)/ (k+2))

where i, j and k are integer variables. If these variables are assigned the values 8, 15 and 4, respectively, then the given
expression would be evaluated as

2x((8%35)x(4+(15-3)/(@+2)))=2x B x(4+(12/6))=2x (3 x(4+2))=2x(3x6)=2x18=136
Suppose the value of this expression will be assigned to the integer variable w; i.e.,
w=2"* ((1%5) " (4+(j-23)/ (k+2)));

It is generally better to break this long arithmetic expression up into several shorter expressions, such as

u=1i%5;
4+ () -3) [/ (k+2);
w=2"*(u"*v),

where u and v are integer variables. These equivalent expressions are much more likely to be written correctly than the
original lengthy expression.
Assignment expressions will be discusscd in greater detail in Sec. 3.4.

3.2 UNARY OPERATORS

C includes a class of operators that act upon a single operand to produce a new value. Such operators are
known as unary operators. Unary operators usually precede their single operands, though some unary
operators are written after their operands.

Perhaps the most common unary operation is wnary minus, where a numerical constant, variable or
expression is preceded by a minus sign. (Some programming languages allow a minus sign to be included as
a part of a numeric constant. In C, however, all numeric constants are positive. Thus, a negative number is
actually an expression, consisting of the unary minus operator, followed by a positive numeric constant.)

Note that the unary minus operation is distinctly different from the arithmetic operator which denotes
subtraction (-). The subtraction operator requires two separate operands.

CHAP. 3] OPERATORS AND EXPRESSIONS 51

EXAMPLE 3.10 Here are several examples which illustrate the use of the unary minus operation.
-743 -0X7FFF -0.2 -5E-8
-root1 -{(x +y) -3 * (x +vy)

In each case the minus sign is followed by a numerical operand which may be an integer constant, a floating-point
constant, a numeric variable or an arithmetic expression.

There are two other commonly used unary operators: The increment operator, ++, and the decrement
operator, ——. The increment operator causes its operand to be increased by 1, whereas the decrement operator
causes its operand to be decreased by 1. The operand used with each of these operators must be a single
variable.

EXAMPLE 3.11 Suppose that i is an integer variable that has been assigned a value of 5. The expression ++1i, which is
equivalent to writing i = i + 1, causes the value of i to be increased to 6. Similarly, the expression -~ i, which is
equivalenttoi = i - 1, causes the (original) value of i to be decreased to 4.

The increment and decrement operators can each be utilized two different ways, depending on whether
the operator is written before or after the operand. If the operator precedes the operand (e.g., ++1i), then the
operand will be altered in value before it is utilized for its intended purpose within the program. If, however,
the operator follows the operand (e.g., i++), then the value of the operand will be altered after it is utilized.

EXAMPLE 3.12 A C program includes an integer variable 1 whose initial value is 1. Suppose the program includes the
following three printf statements. (See Example 1.6 for a brief explanation of the printf statement.)

printf(*i = %d\n*, i);
printf(*i = %d\n*, ++i);
printf("i = %d\n*, i);

These printf statements will generate the following three lines of output. (Each printf statement will generate one
line.)

i=1
i=2
i=2

The first statement causes the original value of i to be displayed. The second statement increments i and then displays its
value. The final value of i is displayed by the last statement.

Now suppose that the program includes the following three printf statements, rather than the three statements given
above.

printf("i = %d\n", 1i);
printf(*i = %d\n", i++);
printf("i = %d\n", 1);

The first and third statements are identical to those shown above. In the second statement, however, the unary operator
follows the integer variable rather than precedes it.
These statements will generate the following three lines of output.

The first statement causes the original value of i to be displayed, as before. The second statement causes the current value
of i (1) to be displayed and then incremented (to 2). The final value of i (2) is displayed by the last statement.

We will say much more about the use of the printf statement in Chap. 4. For now, simply note the distinction
between the expression ++1 in the first group of statements, and the expression i++ in the second group.

o
(]

OPERATORS AND EXPRESSIONS [CHAP. 3

Another unary operator that is worth mentioning at this time is the sizeof operator. This operator
returns the size of its operand, in bytes. The sizeof operator always precedes its operand. The operand may
be an expression, or it may be a cast.

Elementary programs rarely make use of the sizeof operator. However, this operator allows a
determination of the number of bytes allocated to various types of data items. This information can be very
useful when transferring a program to a different computer or to a new version of C. It is also used for
dynamic memory allocation, as explained in Sec. 10.4.

EXAMPLE 3.13 Suppose that i is an integer variable, x is a floating-point variable, d is a double-precision variable,
and c is a character-type variable. The statements

printf(“"integer: %d\n", sizeof i);
printf(“float: %d\n", sizeof x);
printf("double: %d\n*, sizeof d);
printf("character: %d\n", sizeof c);

might generate the following output.

integer: 2
float: 4
double: 8
character: 1

Thus., we sec that this version of C allocates 2 bytes to each integer quantity, 4 bytes to each floating-point quantity, 8
bytes to each double-precision quantity, and 1 byte to each character. These values may vary from one version of C to
another, as explained in Sec. 2.3.

Another way to generate the same information is to use a cast rather than a variable within cach printf statement.
Thus, the printf statements could have been written as
printf("integer: %d\n", sizeof (integer));
printf("float: %d\n", sizeof (float));
printf("double: %d\n', sizeof (double));
printf(“character: %d\n", sizeof (char));
These printf statements will generate the same output as that shown above. Note that each cast is enclosed in
parentheses, as described in Sec. 3.1.
Finally, consider the array declaration
char text[) = "California";
The statement
printf("Number of characters = %d', sizeof text);
will generate the following output.
Number of characters = 11
Thus we see that the array text contains 11 characters, as explained in Example 2.26.
A cast is also considered to be a unary operator (see Example 3.5 and the preceding discussion). In

general terms, a reference to the cast operator is written as (type). Thus, the unary operators that we have
encountered so far in this book are -, ++, ——, sizeof and (type).

CHAP. 3] OPERATORS AND EXPRESSIONS 53

Unary operators have a higher precedence than arithmetic operators. Hence, if a unary minus operator
acts upon an arithmetic expression that contains one or more arithmetic operators, the unary minus operation
will be carried out first (unless, of course, the arithmetic expression is enclosed in parentheses). Also, the
associativity of the unary operators is right to left, though consecutive unary operators rarely appear in
elementary programs.

EXAMPLE 3.14 Suppose that x and y are integer variables whose values are 10 and 20, respectively. The value of the
expression -x + y will be —10 + 20 = 10. Note that the unary minus operation is carried out before the addition.

Now suppose that parentheses are introduced, so that the expression becomes -(10 + 20). The value of this
expression is —(10 + 20) = -30. Note that the addition now precedes the unary minus operation.

C includes several other unary operators. They will be discussed in later sections of this book, as the need
arises.

3.3 RELATIONAL AND LOGICAL OPERATORS

There are four relational operators in C. They are

Operator Meaning
< less than
<= less than or equal to
> greater than
>= greater than or equal to

These operators all fall within the same precedence group, which is lower than the arithmetic and unary
operators. The associativity of these operators is left to right.
Closely associated with the relational operators are the following two equality operators,

Operator Meaning
== equal to

1= not equal to

The equality operators fall into a separate precedence group, beneath the relational operators. These
operators also have a left-to-right associativity.

These six operators are used to form logical expressions, which represent conditions that are either true or
false. The resulting expressions will be of type integer, since #rue is represented by the integer value 1 and
Jalse is represented by the value 0.

EXAMPLE 3.15 Suppose that i, j and k are integer variables whose values are 1, 2 and 3, respectively. Several logical
expressions involving these variables are shown below.

Expression Interpretation Value
i<ij true 1
(i +3j) >k true 1
(j +k) > (i+5) false 0
k 1= 3 false 0

-

j == 2 true

54 OPERATORS AND EXPRESSIONS [CHAP. 3

When carrying out relational and equality operations, operands that differ in type will be converted in
accordance with the rules discussed in Sec. 3.1.

EXAMPLE 3.16 Supposc that 1 is an integer variable whose value is 7, f is a floating-point variable whose value is 5.5,
and ¢ is a character variable that represents the character *w'. Several logical expressions that make use of these variables
arc shown below. Each expression involves two different type operands. (Assume that the ASCII character set applies.)

Expression Interpretation Value
f>5 true 1
(1 + F) <= 10 false 0
c == 119 true 1
c != 'p' true 1
c > 10 * (1 + f) false 0

In addition to the relational and equality operators, C contains two logical operators (also called logical
connectives). They are

Operator Meaning
&& and
| or

These operators are referred to as logical and and logical or, respectively.

The logical operators act upon operands that are themselves logical expressions. The net effect is to
combine the individual logical expressions into more complex conditions that are either true or false. The
result of a logical and operation will be true only if both operands are true, whereas the result of a logical or
operation will be true if either operand is true or if both operands are true. In other words, the result of a
logical or operation will be false only if both operands are false.

In this context it should be pointed out that any nonzero value, not just 1, is interpreted as true.

EXAMPLE 3.17 Suppose that i is an integer variable whose value is 7, f is a floating-point variable whose value is 5.5,
and ¢ is a character variable that represents the character 'w'. Several complex logical expressions that make use of these
variables are shown below.

{xpression Interpretation Value
{1 >=6) && (¢ == 'w') true 1
(1 >=6) || (¢ == 119) true 1
(f < 11) && (1 > 100) false 0
(c !'= ‘p'y |] ((1L + F) <= 10) true 1

The first expression is true because both operands are true. In the second expression, both operands are again true; hence
the overall expression is true. ‘The third expression is false because the second operand is false. And finally, the fourth
expression is true because the first operand is true.

Each of the logical operators falls into its own precedence group. Logical and has a higher precedence
than logical or. Both precedence groups are lower than the group containing the equality operators. The
associativity is left to right. The precedence groups are summarized below.

C also includes the unary operator ! that negates the value of a logical expression; i.e., it causes an
expression that is originally true to become false, and vice versa. This operator is referred to as the Jogical
negation (or logical not) operator.

CHAP. 3] OPERATORS AND EXPRESSIONS 55

EXAMPLE 3.18 Suppose that i is an integer variable whose value is 7, and f is a floating-point variable whose value is
5.5. Several logical expressions which make use of these variables and the logical negation operator are shown below.

Expression Interpretation Value
f>5 true 1
I(t > 5) false 0
i<=3 false 0
(i <= 3) true 1
i> (f+1) true 1
Hi> (f+ 1)) false 0

We will see other examples illustrating the use of the logical negation operator in later chapters of this

book.
The hierarchy of operator precedences covering all of the operators discussed so far has become

extensive. These operator precedences are summarized below, from highest to lowest.

0 0 (o
unary operators -t - ! sizeof (type) R—->L
arithmetic multiply, divide and remainder Y% L—->R
arithmetic add and subtract + - L->R
relational operators < <= > >= L—>R
equality operators == |= L->R
logical and &8 L—-> R
logical or [L—->R

A more complete listing is given in Table 3-1, later in this chapter.

EXAMPLE 3.19 Consider once again the variables i, f and c, as described in Examples 3.16 and 3.17;ie.,i =7, f =
5.5and ¢ = 'w'. Some logical expressions that make use of these variables are shown below.

Expression Interpretation Value
i+ f<=10 false 0
i>6 8% c == 'w' true 1
cl='p' || 1+ T <=10 true 1

Each of these expressions has been presented before (the first in Example 3.16, and the other two in Example 3.17),
though pairs of parentheses were included in the previous examples. The parentheses are not necessary because of the
natural operator precedences. Thus, the arithmetic operations will automatically be carried out before the relational or
equality operations, and the relational and equality operations will automatically be carried out before the logical
connectives.

Consider the last expression in particular. The first operation to be carried out will be addition (i.e, i + f); then the
relational comparison (i.e., i + f <= 10); then the equality comparison (i.e, ¢ 1= 'p'); and finally, the logical or
condition.

Complex logical expressions that consist of individual logical expressions joined together by the logical
operators && and | | are evaluated left to right, but only until the overall true/false value has been established.
Thus, a complex logical expression will not be evaluated in its entirety if its value can be established from its
constituent operands.

56 OPERATORS AND EXPRESSIONS [CHAP. 3

EXAMPLE 3.20 Consider the complex logical expression shown below.
error > .0001 && count < 100

If error > .0001 is false, then the second operand (i.e.,, count < 100) will not be evaluated, because the entire
expression will be considered false.
On the other hand, suppose the expression had been written

error > .0001 || count < 100

If error > .0001 is true, then the entire expression will be true. Hence, the second operand will not be evaluated. If
error > .0001 is false, however, then the second expression (i.e., count < 100) must be evaluated to determine if the
entire expression is true or false.

3.4 ASSIGNMENT OPERATORS

There are several different assignment operators in C. All of them are used to form assignment expressions,
which assign the value of an expression to an identifier.

The most commonly used assignment operator is =. Assignment expressions that make use of this
operator are written in the form

Identifier = expression

where identifier generally represents a variable, and expression represents a constant, a variable or a
more complex expression.

EXAMPLE 3.21 Here are some typical assignment expressions that make use of the = operator.
a=3
X =Yy
delta = 0.001
sum = a + b

area = length * width

The first assignment expression causes the integer value 3 to be assigned to the variable a, and the second assignment
causes the value of y to be assigned to x. In the third assignment, the floating-point value 0.001 is assigned to delta.
The last two assignments each result in the value of an arithmetic expression being assigned to a variable (i.e., the value of
a + bisassigned to sum, and the value of 1ength * width is assigned to area).

Remember that the assignment operator = and the equality operator == are distinctly different. The
assignment operator is used to assign a value to an identifier, whereas the equality operator is used to
determine if two expressions have the same value. These operators cannot be used in place of one another.
Beginning programmers often incorrectly use the assignment operator when they want to test for equality.
This results in a logical error that is usually difficult to detect.

Assignment expressions are often referred to as assignment statements, since they are usually written as
complete statements. However, assignment expressions can also be written as expressions that are included
within other statements {(more about this in later chapters).

If the two operands in an assignment expression are of different data types, then the value of the
expression on the right (i.e., the right-hand operand) will automatically be converted to the type of the
identifier on the left. The entire assignment expression will then be of this same data type.

CHAP. 3] OPERATORS AND EXPRESSIONS 57

Under some circumstances, this automatic type conversion can result in an alteration of the data being
assigned. For example:
¢ A floating-point value may be truncated if assigned to an integer identifier.
e A double-precision value may be rounded if assigned to a floating-point (single-precision) identifier.
e An integer quantity may be altered if assigned to a shorter integer identifier or to a character identifier
(some high-order bits may be lost).

Moreover, the value of a character constant assigned to a numeric-type identifier will be dependent upon the
particular character set in use. This may result in inconsistencies from one version of C to another.
The careless use of type conversions is a frequent source of error among beginning programmers.

EXAMPLE 3.22 In the following assignment expressions, suppose that i is an integer-type variable.

Expression Value
i=23.3 3
i=3.9 3
i=-3.9 -3

Now suppose that i and j are both integer-type variables, and that j has been assigned a value of 5. Several
assignment expressions that make use of these two variables are shown below.

Expression Value

1= 5

i=j/t2 2

i=2*j1/2 5 (left-to-right associativity)

i=2*(j/2) 4 (truncated division, followed by multiplication)

Finally, assume that i is an integer-type variable, and that the ASCII character set applies.

Expression Value
i=x 120
i="'0' 48
i=('x"-'0)/3 24

i=(y -'0)/3 24

Multiple assignments of the form
identifier 1 = lidentifier 2 = --- = expression

are permissible in C. In such situations, the assignments are carried out from right to left. Thus, the multiple
assignment

Identifier 1 = identifier 2 = expression

is equivalent to

Identifier 1 = (identifier 2 = expression)

and so on, with right-to-left nesting for additional multiple assignments.

58 OPERATORS AND EXPRESSIONS [CHAP. 3

EXAMPLE 3.23 Suppose that i and j are integer variables. The multiple assignment expression

will cause the integer value 5 to be assigned to both i and j. (To be more precise, 5 is first assigned to j, and the value of
j is then assigned to i.)
Similarly, the multiple assignment expression

will cause the integer value 5 to be assigned to both i and j. Remember that truncation occurs when the floating-point
value 5.9 is assigned to the integer variable j.

C contains the following five additional assignment operators: +=, -=, *=, /= and %=. To see how
they are used, consider the first operator, +=. The assignment expression

expression 1 += expression 2
is equivalent to

expression 1 = expression 1 + expression 2

Similarly, the assignment expression

expression 1 -= expression 2
is equivalent to

expression 1 = expression 1 - expression 2
and so on for all five operators.

Usually, expression 1 is an identifier, such as a variable or an array element.

EXAMPLE 3.24 Suppose that i and j are integer variables whose values are 5 and 7, and f and g are floating-point
variables whose values are 5.5 and -3.25. Several assignment expressions that make use of these variables are shown
below. Each expression utilizes the original values of 1, j, f and g.

Expressi Equivalent E ‘ Final val
i+=5 i=i+5 10
f-=g f=f-g 8.75

j*=(1-23) j=3c(1-3) 14
f /=3 f=1/3 1.833333

i%= (j-2) i=1%(j-2) 0

Assignment operators have a lower precedence than any of the other operators that have been discussed
so far. Therefore unary operations, arithmetic operations, relational operations, equality operations and logical
operations are all carried out before assignment operations. Moreover, the assignment operations have a right-
to-left associativity.

The hierarchy of operator precedences presented in the last section can now be modified as follows to
include assignment operators.

CHAP. 3] OPERATORS AND EXPRESSIONS 59

Operator category Operators Associativity
unary operators - o+ - ! sizeof (type) R->L
arithmetic multiply, divide and remainder * % L->R
arithmetic add and subtract + - L->R
relational operators < <= > >= L—->R
equality operators == 1= L—->R
logical and && L-» R
logical or | L—->R
assignment operators = 4= -= *= /= %= R-oL

See Table 3-1 later in this chapter for a more complete listing.

EXAMPLE 3.25 Suppose that x, y and z are integer variables which have been assigned the values 2, 3 and 4,
respectively. The expression

X *= -2 * (y +2) /3
is equivalent to the expression
X =x*(-2*(y+2z)/3)

Either expression will cause the value —8 to be assigned to x.

Consider the order in which the operations are carried out in the first expression. The arithmetic operations precede
the assignment operation. Therefore the expression (y + z) will be evaluated first, resulting in 7. Then the value of this
expression will be multiplied by -2, yielding —14. This product will then be divided by 3 and truncated, resulting in —4.
Finally, this truncated quotient is multiplied by the original value of x (i.e., 2) to yield the final result of -8.

Note that all of the explicit arithmetic operations are carried out before the final multiplication and assignment are
made.

C contains other assignment operators, in addition to those discussed above. We will discuss them in
Chap. 13.

3.5 THE CONDITIONAL OPERATOR

Simple conditional operations can be carried out with the conditional operator (7 :). An expression that
makes use of the conditional operator is called a conditional expression. Such an expression can be written in
place of the more traditional if-else statement, which is discussed in Chap. 6.

A conditional expression is written in the form

expression 1 7 expression 2 : expression 3

When evaluating a conditional expression, expression 1 is evaluated first. If expression 1 is true
(i.e., if its value is nonzero), then expression 2is evaluated and this becomes the value of the conditional
expression. However, if expression 1 is false (i.e., if its value is zero), then expression 3is evaluated
and this becomes the value of the conditional expression. Note that only one of the embedded expressions
(either expression 2 or expression 3J) is evaluated when determining the value of a conditional
expression.

EXAMPLE 3.26 In the conditional expression shown below, assume that i is an integer variable.

(1 <0)?0: 100

60 OPERATORS AND EXPRESSIONS [CHAP. 3

The expression (i < 0) is evaluated first. If it is true (i.e., if the value of i is less than 0), the entire conditional
expression takes on the value 0. Otherwise (if the value of 1 is not less than 0), the entire conditional expression takes on
the value 100.

In the following conditional expression, assume that f and g are floating-point variables.

(f<g)?2f:g

This conditional expression takes on the value of f if f is less than g; otherwise, the conditional expression takes on the
value of g. In other words, the conditional expression returns the value of the smaller of the two variables.

If the operands (i.e., expression 2and expression 3) differ in type, then the resulting data type of
the conditional expression will be determined by the rules given in Sec. 3.1.

EXAMPLE 3.27 Now suppose that i is an integer variable, and f and g are floating-point variables. The conditional
expression

(f<g)?2i:g

involves both integer and floating-point operands. Thus, the resulting expression will be floating-point, even if the value
of 1 is selected as the value of the expression (because of rule 2 in Sec. 3.1).

Conditional expressions frequently appear on the right-hand side of a simple assignment statement. The
resulting value of the conditional expression is assigned to the identifier on the left.

EXAMPLE 3.28 Here is an assignment statement that contains a conditional expression on the right-hand side.
flag = (i < 0) 2 0 : 100

If the value of i is negative, then 0 will be assigned to flag. If i is not negative, however, then 100 will be assigned to
flag.
Here is another assignment statement that contains a conditional expression on the right-hand side.

min = (f<g) ?2f : g
This statement causes the value of the smaller of f and g to be assigned to min.

The conditional operator has its own precedence, just above the assignment operators. The associativity
is right to left.
Table 3-1 summarizes the precedences for all of the operators discussed in this chapter.

Table 3-1 Operator Precedence Groups

Operator category Operators Associativity
unary operators - ++ { sizeof (type) R->L
arithmetic multiply, divide and remainder % LR
arithmetic add and subtract + - L—->R
relational operators < <= > >= LR
equality operators == 1= L->R
logical and && L—-> R
logical or || L->R
conditional operator ? R-oL

assignment operators = += = = /= %= R-oL

CHAP. 3] OPERATORS AND EXPRESSIONS 61

A complete listing of all C operators, which is more extensive than that given in Table 3-1, is shown in
Appendix C.

EXAMPLE 3.29 In the following assignment statement, a, b and ¢ are assumed to be integer variables. The statement
includes operators from six different precedence groups.

c += (a > 0 && a <= 10) ? ++a : a/b;
The statement begins by evaluating the complex expression
{a >0 &% a <= 10)

If this expression is true, the expression ++a is evaluated. Otherwise, the expression a/b is evaluated. Finally, the
assignment operation (+=) is carried out, causing the value of ¢ to be increased by the value of the conditional expression.

If, for example, a, b and ¢ have the values 1, 2 and 3, respectively, then the value of the conditional expression will
be 2 (because the expression ++a will be evaluated), and the value of ¢ will increase to 5 (c = 3 + 2). On the other hand, if
a, b and ¢ have the values 50, 10 and 20, respectively, then the value of the conditional expression will be 5 (because the
expression a/b will be evaluated), and the value of ¢ will increase to 25 (c =20 + 5).

3.6 LIBRARY FUNCTIONS

The C language is accompanied by a number of /ibrary functions that carry out various commonly used
operations or calculations. These library functions are not a part of the language per se, though all
implementations of the language include them. Some functions return a data item to their access point; others
indicate whether a condition is true or false by returning a 1 or a 0, respectively; still others carry out specific
operations on data items but do not return anything. Features which tend to be computer-dependent are
generally written as library functions.

For example, there are library functions that carry out standard input/output operations (e.g., read and
write characters, read and write numbers, open and close files, test for end of file, etc.), functions that perform
operations on characters (e.g., convert from lower- to uppercase, test to see if a character is uppercase, etc.),
functions that perform operations on strings (e.g., copy a string, compare strings, concatenate strings, etc.),
and functions that carry out various mathematical calculations (e.g., evaluate trigonometric, logarithmic and
exponential functions, compute absolute values, square roots, etc.). Other kinds of library functions are also
available.

Library functions that are functionally similar are usually grouped together as (compiled) object programs
in separate library files. These library files are supplied as a part of each C compiler. All C compilers contain
similar groups of library functions, though they lack precise standardization. Thus there may be some
variation in the library functions that are available in different versions of the language.

A typical set of library functions will include a fairly large number of functions that are common to most
C compilers, such as those shown in Table 3-2 below. Within this table, the column labeled “type” refers to
the data type of the quantity that is returned by the function. The void entry shown for function srand
indicates that nothing is returned by this function.

A more extensive list, which includes all of the library functions that appear in the programming
examples presented in this book, is shown in Appendix H. For complete list, see the programmer’s reference
manual that accompanies your particular version of C.

A library function is accessed simply by writing the function name, followed by a list of arguments that
represent information being passed to the function. The arguments must be enclosed in parentheses and
separated by commas. The arguments can be constants, variable names, or more complex expressions. The
parentheses must be present, even if there are no arguments.

A function that returns a data item can appear anywhere within an expression, in place of a constant or an
identifier (i.e., in place of a variable or an array element). A function that carries out operations on data items
but does not return anything can be accessed simply by writing the function name, since this type of function
reference constitutes an expression statement.

62 OPERATORS AND EXPRESSIONS [CHAP. 3

Table 3-2 Some Commonly Used Library Functions

Function Type Purpose

abs(i) int Return the absolute value of i.

ceil(d) double Round up to the next integer value (the smallest integer that is greater than or
equal to d).

cos(d) double Return the cosine of d.

cosh(d) double Retumn the hyperbolic cosine of d.

exp(d) double Raise e to the power d (¢ =2.7182818 - - - is the base of the natural (Naperian)
system of logarithms).

fabs(d) double Return the absolute value of d.

floor(d) double Round down to the next integer value (the largest integer that does not exceed d).

tfmod(d1,d2) double Return the remainder (i.e., the noninteger part of the quotient) of d1/d2, with
same sign as d1.

getchar() int Enter a character from the standard input device.

log(d) double Return the natural logarithm of d.

pow(d1,d2) double Return d1 raised to the d2 power.

printf(...) int Send data items to the standard output device (arguments are complicated —
see Chap. 4).

putchar(c) int Send a character to the standard output device.

rand() int Return a random positive integer.

sin(d) double Return the sine of d.

sqrt(d) double Return the square root of d.

srand(u) void Initialize the random number generator.

scanf(...) int Enter data items from the standard input device (arguments are complicated —
see Chap. 4).

tan(d) double Return the tangent of d.

toascii(c) int Convert value of argument to ASCII.

tolower(c) int Convert letter to lowercase.

toupper(c) int Convert letter to uppercase.

Note: Type refers to the data type of the quantity that is returned by the function.
c denotes a character-type argument
i denotes an integer argument
d denotes a double-precision argument
u denotes an unsigned integer argument

EXAMPLE 3.30 Shown below is a portion of a C program tliat solves for the roots of the quadratic equation
ax2 +bx+c=0

using the well-known quadratic formula

e —b+ Vb2 —dac

2a

CHAP. 3] OPERATORS AND EXPRESSIONS 63

This program uses the sqrt library function to evaluate the square root.

main() /* solution of a quadratic equation */

{

double a,b,c,root,x1,x2;
/* read values for a, b and ¢ */

root = sgrt(b * b - 4 * a * ¢);
x1 = (-b + root) / (2 * a);
x2 = (-b - root) / (2 * a);

/* display values for a, b, c, x1 and x2 */

}

In order to use a library function it may be necessary to include certain specific information within the
main portion of the program. For example, forward function declarations and symbolic constant definitions
are usually required when using library functions (see Secs. 7.3, 8.5 and 8.6). This information is generally
stored in special files which are supplied with the compiler. Thus, the required information can be obtained
simply by accessing these special files. This is accomplished with the preprocessor statement #include;i.e.,

#include <filename>

where 7ilename represents the name of a special file.

The names of these special files are specified by each individual implementation of C, though there are
certain commonly used file names such as stdio.h, stdlib.h and math.h. The suffix “h” generally
designates a “header” file, which indicates that it is to be included at the beginning of the program. (Header
files are discussed in Sec. 8.6.)

Note the similarity between the preprocessor statement #include and the preprocessor statement
#define, which was discussed in Sec. 2.9.

EXAMPLE 3.31 Lowercase to Uppercase Character Conversion Here is a complete C program that reads in a
lowercase character, converts it to uppercase and then displays the uppercase equivalent.

/* read a lowercase character and display its uppercase equivalent */

#include <stdio.h>
#include <ctype.h>

main()

{

int lower, upper;

lower = getchar();
upper = toupper(lower);
putchar(upper};

}

This program contains three library functions: getchar, toupper and putchar. The first two functions each
return a single character (getchar returns a character that is entered from the keyboard, and toupper returns the
uppercase equivalent of its argument). The last function (putchar) causes the value of the argument to be displayed.
Notice that the last two functions each have one argument but the first function does not have any arguments, as indicated
by the empty parentheses.

Also, notice the preprocessor statements #include <stdio.h> and #include <ctype.h>, which appear at the
start of the program. These statements cause the contents of the files stdio.h and ctype.h to be inserted into the
program the compilation process begins. The information contained in these files is essential for the proper functioning of
the library functions getchar, putchar and toupper.

64

31
3.2
33
34
35
3.6
3.7
38
3.9
3.10
3.11
3.12
3.13
3.14

3.15
3.16

3.17
3.18

3.19

3.20

3.2z1
3.22

323
3.4
3.28

3.26
3.27
3.28

3.29
3.30
3.3
3.32
3.33

3.34

3.3s

OPERATORS AND EXPRESSIONS [CHAP. 3

Review Questions

What is an expression? What are its components?

What is an operator? Describe several different types of operators that are included in C.

What is an operand? What is the relationship between operators and operands?

Describe the five arithmetic operators in C. Summarize the rules associated with their use.

Summarize the rules that apply to expressions whose operands are of different types.

How can the value of an expression be converted to a different data type? What is this called?

What is meant by operator precedence? What are the relative precedences of the arithmetic operators?

What is meant by associativity? What is the associativity of the arithmetic operators?

When should parentheses be included within an expression? When should the use of parentheses be avoided?

In what order are the operations carried out within an expression that contains nested parentheses?

What are unary operators? How many operands are associated with a unary operator?

Describe the six unary operators discussed in this chapter. What is the purpose of each?

Describe two different ways to utilize the increment and decrement operators. How do the two methods differ?
What is the relative precedence of the unary operators compared with the arithmetic operators? What is their
associativity?

How can the number of bytes allocated to each data type be determined for a particular C compiler?

Describe the four relational operators included in C. With what type of operands can they be used? What type of
expression is obtained?

Describe the two equality operators included in C. How do they differ from the relational operators?

Describe the two logical operators included in C. What is the purpose of each? With what type of operands can
they be used? What type of expression is obtained?

What are the relative precedences of the relational, equality and logical operators with respect to one another and
with respect to the arithmetic and unary operators? What are their associativities?

Describe the /ogical not (logical negation) operator. What is its purpose? Within which precedence group is it
included? How many operands does it require? What is its associativity?

Describe the six assignment operators discussed in this chapter. What is the purpose of each?

How is the type of an assignment expression determined when the two operands are of different data types? In
what sense is this situation sometimes a source of programming errors?

How can multiple assignments be written in C? In what order will the assignments be carried out?

What is the precedence of assignment operators relative to other operators? What is their associativity?

Describe the use of the conditional operator to form conditional expressions. How is a conditional expression
evaluated?

How is the type of a conditional expression determined when its operands differ in type?

How can the conditional operator be combined with the assignment operator to form an “if - else” type statement?
What is the precedence of the conditional operator relative to the other operators described in this chapter? What
is its associativity?

Describe, in general terms, the kinds of operations and calculations that are carried out by the C library functions.
Are the library functions actually a part of the C language? Explain.

How are the library functions usually packaged within a C compiler?

How are library functions accessed? How is information passed to a library function from the access point?

What are arguments? How are arguments written? How is a call to a library function written if there are no
arguments?

How is specific information that may be required by the library functions stored? How is this information entered
into a C program?

In what general category do the #define and #include statements fall?

CHAP. 3] OPERATORS AND EXPRESSIONS 65

Problems

3.36 Suppose a, b and c are integer variables that have been assigned the values a =8, b =3 and ¢ =-5. Determine the
value of each of the following arithmetic expressions.

(@) a+b+ec N a%c

) 2*b+3* (a-c) () a*b/c
(¢c) a/b (h) a* (b /c)
d a%xb @ (a*c)sb
) a/c () a* (c%b)

3.37 Suppose x, y and z are floating-point variables that have been assigned the values x = 8.8, y = 3.5 and z = -5.2.
Determine the value of each of the following arithmetic expressions.

(@ x+y+z (& x/ (y+2)
b 2*y+3*(x-2) N (x7y)+z
o0 x1/y ® 2*x/3*y
(d x%y W 2*x1/(38*y)

3.38 Suppose c1, c2 and c3 are character-type variables that have been assigned the characters E, 5 and ?, respectively.
Determine the numerical value of the following expressions, based upon the ASCII character set (see Table 2-1).

(@) c1 (N c1 %c3

(b) ¢t -c2 + c3 g ‘'29+'2

(c) c2-2 (k) (c1 / c2) * c3
d c2-'2 (H 3 *c2

() c3 + '# ¢ '3 *c2

3.39 A C program contains the following declarations:
int i, j;
long ix;
short s;
float x;
double dx;
char c;

Determine the data type of each of the following expressions.

(@ i+c N s+
(b) x+c ® ix +]
(¢) dx + x (h) s+c¢
(d) ((int) dx) + ix () ix + ¢

(e) i+ x
3.40 A Cprogram contains the following declarations and initial assignments:

inti =8, j =5;
float x = 0.005, y = -0.01;
char ¢ = 'c', d = 'd';
Determine the value of each of the following expressions. Use the values initially assigned to the variables for
each expression.
(@ @B*i-2+*j)%(2*d-c)
b)) 2* (1 /5 +(4*(]-3)%(1+]j-2)

66

341

OPERATORS AND EXPRESSIONS [CHAP. 3

@ ({1-3*j)%(c+r2*d)/ (x-y)

@ -(i+])
(e) ++3

(0] it+

©® i

(h) +4+X

(M y—

N 1<=]
k) c>d
() x >= 0
(m) x <y
(n) 11=6
(0) c == 99

@ 5*(i+j)>"'c

(9 (2*x+y)==0

(n 2*x+ (y==0)

(5) 2*x+y-==

0 1 <= j)

(u) t(c == 99)

» x>0

(w) (1>0) & (j <5)

(x) (1>0) 11 (<5

) (x >y) & (i > 0) 1! (j < 5)
(z) (x>y) & (i > 0) && (j < 5)

A

A C program contains the following declarations and initial assignments:

inti=28, j=25, k;
float x = 0.005, y = -0.01, z;
char a, b, ¢c = 'c', d = 'd';

Determine the value of each of the following assignment expressions. Use the values originally assigned to the
variables for each expression.

(@ k= (1+]) N y-=x

(&) z=(x+y) (m) x *=2

©0 1=1] (ny 1/=1]

@ k= (x+y) (0) 1%]

&0 k=c P 1i+=(j-2)

0N z=1i/] (@ k=(j==5)21i:]
® a=b=d N k=(j>5 21i:j
h)y i=13=1.1 (s) z=(x>0)?x:0
(i) zZ=Kk=X O z=(y>=0)?2y:0
) k =2z=x () a=(c<d)?2c:d

(k) i +=2 W i-=(j>0)?j:0

CHAP. 3] OPERATORS AND EXPRESSIONS 67

3.42 Each of the following expressions involves the use of a library function. Identify the purpose of each expression.

(See Appendix H for an extensive list of library functions.)

(@) abs(i-2*]) () sart(x*x + y*y)
(b) fabs(x + vy) (m) isalnum(10 * j)
(¢) isprint(c) (n) isalpha(10 * j)
(d) 1isdigit(c) (o) 1isascii(10 * j)
(¢) toupper(d) (p) toascii(10 * j)
)] ceil(x) (g) fmod(x, Y)

(g) floor(x + vy) (r) tolower(65)

(h) islower(c) (s) pow(x -y, 3.0)
(i) isupper(j) (H sin(x -)

1)) exp(x) (¥) strlen("hello\0")
(k) log(x) (v) strpos("hello\0", 'e')

3.43 A Cprogram contains the following declarations and initial assignments:

int 1 = 8, j = 5;
double x = 0.005, y = -0.01;
char ¢ = '¢', d = 'd';

Determine the value of each of the following expressions, which involve the use of library functions. (See
Appendix H for an extensive list of library functions.)

(@) abs(i-2*j) (m) log(exp(x))

(b) fabs(x + y) (o) sgrt(x*x + y*y)

(c) isprint(c) (p) isalpum(10 * j)

(d) 1isdigit(c) (g) isalpha(10 * j)

(e) toupper(d) (r) isascii(10 * j)

)] ceil(x) (s) toascii(10 * j)

(g) ceil(x + y)) fmod(x, y)

(h) floor(x) (u) tolower(65)

Q) floor(x + y) (v) pow(x -y, 3.0)

) islower(c) (w) sin(x - y)

(k) 1isupper(j) (x) strlen(“hello\0")

()] exp(x) () strpos(*hello\0", ‘e')
(m) log(x) (z) sart(sin(x) + cos(y))

3.44 Determine which of the library functions shown in Appendix H are available for your particular version of C. Are
some of the functions available under a different name? What header files are required?

Chapter 4

Data Input and Output

We have already seen that the C language is accompanied by a collection of library functions, which includes
a number of input/output functions. In this chapter we will make use of six of these functions: getchar,
putchar, scanf, printf, gets and puts. These six functions permit the transfer of information between
the computer and the standard input/output devices (e.g., a keyboard and a TV monitor). The first two
functions, getchar and putchar, allow single characters to be transferred into and out of the computer;
scanf and printf are the most complicated, but they permit the transfer of single characters, numerical
values and strings; gets and puts facilitate the input and output of strings. Once we have learned how to use
these functions, we will be able to write a number of complete, though simple, C programs.

4.1 PRELIMINARIES

An input/output function can be accessed from anywhere within a program simply by writing the function
name, followed by a list of arguments enclosed in parentheses. The arguments represent data items that are
sent to the function. Some input/output functions do not require arguments, though the empty parentheses
must still appear.

The names of those functions that return data items may appear within expressions, as though each
function reference were an ordinary variable (e.g., ¢ = getchar();), or they may be referenced as separate
statements (e.g., scanf(. . .);). Some functions do not return any data items. Such functions are
referenced as though they were separate statements (e.g., putchar(. . .);)

Most versions of C include a collection of header files that provide necessary information (e.g., symbolic
constants) in support of the various library functions. Each file generally contains information in support of a
group of related library functions. These files are entered into the program via an #include statement at the
beginning of the program. As a rule, the header file required by the standard input/output library functions is
called stdio.h (see Sec. 8.6 for more information about the contents of these header files).

EXAMPLE 4.1 Here is an outline of a typical C program that makes use of several input/output routines from the
standard C library.

/* sample setup illustrating the use of input/output library functions */

#include <stdio.h>

main()

{
char c¢,d; /* declarations */
float x,y;
int i,j,k;
¢ = getchar(); /* character input */
scanf{"%f", &x); /* floating-point input */
scanf({"%d %d*, &i, &j); /* integer input */
e /* action statements */
putchar(d); /* character output */
printf{“s3d %7.4f", Kk, y); /* numerical output */

}

68

CHAP. 4] DATA INPUT AND OUTPUT 69

The program begins with the preprocessor statement #include <stdio.h>. This statement causes the contents of
the header file stdio.h to be included within the program. The header file supplies required information to the library
functions scanf and printf. (The syntax of the #include statement may vary from one version of C to another; some
versions of the language use quotes instead of angle-brackets, e.g., #include *stdio.h".)

Following the preprocessor statement is the program heading main() and some variable declarations. Several
input/output statements are shown in the skeletal outline that follows the declarations. In particular, the assignment
statement ¢ = getchar(); causes a single character to be entered from the keyboard and assigned to the character
variable ¢. The first reference to scanf causes a floating-point value to be entered from the keyboard and assigned to the
floating-point variable x, whereas the second reference to scanf causes two decimal integer quantities to be entered from
the keyboard and assigned to the integer variables i and j, respectively.

The output statements behave in a similar manner. Thus, the reference to putchar causes the value of the character
variable d to be displayed. Similarly, the reference to printf causes the values of the integer variable k and the floating-
point variable y to be displayed.

The details of each input/output statement will be discussed in subsequent sections of this chapter. For now, you
should consider only a general overview of the input/output statements appearing in this typical C program.

4.2 SINGLE CHARACTER INPUT — THE getchar FUNCTION

Single characters can be entered into the computer using the C library function getchar. We have already
encountered the use of this function in Chaps. 1 and 2, and in Example 4.1. Let us now examine it more
thoroughly.

The getchar function is a part of the standard C 1/0O library. It returns a single character from a standard
input device (typically a keyboard). The function does not require any arguments, though a pair of empty
parentheses must follow the word getchar.

In general terms, a function reference would be written as

character variable = getchar();
where character variable refersto some previously declared character variable.
EXAMPLE 4.2 A C program contains the following statements.
char c;
; ; éeécéar();
The first statement declares that ¢ is a character-type variable. The second statement causes a single character to be

entered from the standard input device (usually a keyboard) and then assigned to c.

If an end-of-file condition is encountered when reading a character with the getchar function, the value
of the symbolic constant EOF will automatically be returned. (This value will be assigned within the stdio.h
file. Typically, EOF will be assigned the value —1, though this may vary from one compiler to another.) The
detection of EOF in this manner offers a convenient way to detect an end of file, whenever and wherever it
may occur. Appropriate corrective action can then be taken. Both the detection of the EOF condition and the
corrective action can be carried out using the if - else statement described in Chap. 6.

The getchar function can also be used to read multicharacter strings, by reading one character at a time
within a multipass loop. We will see one illustration of this in Example 4.4 below. Additional examples will
be presented in later chapters of this book.

4.3 SINGLE CHARACTER OUTPUT — THE putchar FUNCTION

Single characters can be displayed (i.e, written out of the computer) using the C library function putchar.
This function is complementary to the character input function getchar, which we discussed in the last

70 DATA INPUT AND OUTPUT [CHAP. 4

section. We have already seen illustrations of the use of these two functions in Chaps. 1 and 2, and in
Example 4.1. We now examine the use of putchar in more detail.

The putchar function, like getchar, is a part of the standard C I/O library. It transmits a single
character to a standard output device (typically a TV monitor). The character being transmitted will normally
be represented as a character-type variable. It must be expressed as an argument to the function, enclosed in
parentheses, following the word putchar.

In general, a function reference would be written as

putchar(character variable)

where character variable refers to some previously declared character variable.

EXAMPLE 4.3 A C program contains the following statements.

char c;
putchar(c);
The first statement declares that ¢ is a character-type variable. The second statement causes the current value of c to be

transmitted to the standard output device (e.g., a TV monitor) where it will be displayed. (Compare with Example 4.2,
which illustrates the use of the getchar function.)

The putchar function can be used to output a string constant by storing the string within a one-
dimensional, character-type array, as explained in Chap. 2. Each character can then be written separately
within a loop. The most convenient way to do this is to utilize a for statement, as illustrated in the following
example. (The for statement is discussed in detail in Chap. 6.)

EXAMPLE 4.4 Lowercase to Uppercase Text Conversion Here is a complete program that reads a line of lowercase
text, stores it within a one-dimensional, character-type array, and then displays it in uppercase.
/* read in a line of lowercase text and display it in uppercase */

#include <stdio.h>
#include <ctype.h>

main()

{
char letter[80];

int count, tag;

/* enter the text */

for (count = 0; (letter[count] = getchar()) l= '\n'; ++count)
H

/* tag the character count */

tag = count;

/* display the line in uppercase */

for (count = O; count < tag; ++count)
putchar (toupper(letter[count]));

Notice the declaration

CHAP. 4] DATA INPUT AND OUTPUT 71

char letter{80];

This declares letter to be an 80-element, character-type array whose elements will represent the individual characters
within the line of text.
Now consider the statement

for (count = 0; (letter[count] = getchar()) != '\n'; ++count)

]

This statement creates a loop that causes the individual characters to be read into the computer and assigned to the array
elements. The loop begins with a value of count equal to zero. A character is then read into the computer from the
standard input device, and assigned to letter[0] (the first element in letter). The value of count is then incremented,
and the process is repeated for the next array element. This looping action continues as long as a newline character (i.e.,
'\n"') is not encountered. The newline character will signify the end of the line, and will therefore terminate the process.

Once all of the characters have been entered, the value of count corresponding to the last character is assigned to
tag. Another for loop is then initiated, in which the uppercase equivalents of the original characters are displayed on the
standard output device. Characters that were originally uppercase, digits, punctuation characters, etc., will be displayed in
their original form. Thus, if the message

Now is the time for all good men to come to the aid of their country!
is entered as input, the corresponding output will be
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR COUNTRY!

Note that tag will be assigned the value 69 after all of the characters have been entered, since the 69th character will
be the newline character following the exclamation point.

Chapter 6 contains more detailed information on the use of the for statement to control a character array. For now,
you should seek only a general understanding of what is happening.

4.4 ENTERING INPUT DATA — THE scanf FUNCTION

Input data can be entered into the computer from a standard input device by means of the C library function
scanf. This function can be used to enter any combination of numerical values, single characters and strings.
The function returns the number of data items that have been entered successfully.

In general terms, the scanf function is written as

scanf(control string, argt!, arg2, . . . , argn)

where control string refers to a string containing certain required formatting information, and arg7,
arg2, . . . , argnare arguments that represent the individual input data items. (Actually, the arguments
represent pointers that indicate the addresses of the data items within the computer’s memory. More about
this later, in Chap. 10.)

The control string consists of individual groups of characters, with one character group for each input data
item. Each character group must begin with a percent sign (%). In its simplest form, a single character group
will consist of the percent sign, followed by a conversion character which indicates the type of the
corresponding data item.

Within the control string, multiple character groups can be contiguous, or they can be separated by
whitespace characters (i.e., blank spaces, tabs or newline characters). If whitespace characters are used to
separate multiple character groups in the control string, then all consecutive whitespace characters in the input
data will be read but ignored. The use of blank spaces as character-group separators is very common.

The more frequently used conversion characters are listed in Table 4-1.

72 DATA INPUT AND OUTPUT [CHAP. 4

Table 4-1 Commonly Used Conversion Characters for Data Input

Conversion

Character Meaning
c data item is a single character
d data item is a decimal integer
e data item is a floating-point value
f data item is a floating-point value
g data item is a floating-point value
h data item is a short integer
i data item is a decimal, hexadecimal or octal integer
0 data item is an octal integer
s data item is a string followed by a whitespace character (the null character \ 0 will

automatically be added at the end)

u data item is an unsigned decimal integer
X data item is a hexadecimal integer

[. . .1 data item is a string which may include whitespace characters (see explanation below)

The arguments are written as variables or arrays, whose types match the corresponding character groups
in the control string. Each variable name must be preceded by an ampersand (&). (The arguments are
actually pointers that indicate where the data items are stored in the computer’s memory, as explained in
Chap. 10.) However, array names should not begin with an ampersand.

EXAMPLE 4.5 Here is a typical application of a scanf function.

#include <stdio.h>

main()

{
char item{20];
int partno;
float cost;

scanf("%s %d %f", item, &partno, &cost);

}

Within the scanf function, the control string is *%s %d %f*. It contains three character groups. The first character
group, %s, indicates that the first argument (item) represents a string. The second character group, %d, indicates that the
second argument (&partno) represents a decimal integer value, and the third character group, %¥, indicates that the third
argument (&cost) represents a floating-point value.

Notice that the numerical variables partno and cost are preceded by ampersands within the scanf function. An

ampersand does not precede item, however, since item is an array name.
Notice also that the scanf function could have been written

scanf ("%s%d%f", item, &partno, &cost);

CHAP. 4] DATA INPUT AND OUTPUT 73

with no whitespace characters in the control string. This is also valid, though the input data could be interpreted
differently when using c-type conversions (more about this later in this chapter).

The actual data items are numeric values, single characters or strings, or some combination thereof. They
are entered from a standard input device (typically a keyboard). The data items must correspond to the
arguments in the scanf function in number, in type and in order. Numeric data items are written in the same
form as numeric constants (see Sec. 2.4), though octal values need not be preceded by a 0, and hexadecimal
values need not be preceded by Ox or OX. Floating-point values must include either a decimal point or an
exponent (or both).

If two or more data items are entered, they must be separated by whitespace characters. (A possible
exception to this rule occurs with c-type conversions, as described in Sec. 4.5) The data items may continue
onto two or more lines, since the newline character is considered to be a whitespace character and can
therefore separate consecutive data items.

Moreover, if the control string begins by reading a character-type data item, it is generally a good idea to
precede the first conversion character with a blank space. This causes the scanf function to ignore any
extraneous characters that may have been entered earlier (for example, by pressing the Enter key after
entering a previous line of data).

EXAMPLE 4.6 Consider once again the skeletal outline of a C program shown in Example 4.5; i.e.,

#include <stdio.h>

main()

{
char item[20];
int partno;
float cost;

scanf(" %s %d %f", item, &partno, &cost);

Notice the blank space that precedes %s. This prevents any previously entered extraneous characters from being assigned
to item.
The following data items could be entered from the standard input device when the program is executed.

fastener 12345 0.05

Thus, the characters that make up the string fastener would be assigned to the first eight elements of the array item; the
integer value 12345 would be assigned to partno, and the floating-point value 0.05 would be assigned to cost.

Note that the individual data items are entered on one line, separated by blank spaces. The data items could also be
entered on separate lines, however, since newline characters are also whitespace characters. Therefore, the data items
could also be entered in any of the following ways:

fastener fastener fastener 12345
12345 12345 0.05 0.05
0.05

74 DATA INPUT AND QUTPUT [CHAP. 4

Note that the s-type conversion character applies to a string that is terminated by a whitespace character.
Therefore, a string that includes whitespace characters cannot be entered in this manner. There are ways,
however, to work with strings that include whitespace characters. One way is to use the getchar function
within a loop, as illustrated in Example 4.4. It is also possible to use the scanf function to enter such strings.
To do so, the s-type conversion character within the control string is replaced by a sequence of characters
enclosed in square brackets, designated as [. . .]. Whitespace characters may be included within the
brackets, thus accommodating strings that contain such characters.

When the program is executed, successive characters will continue to be read from the standard input
device as long as each input character matches one of the characters enclosed within the brackets. The order
of the characters within the square brackets need not correspond to the order of the characters being entered.
Input characters may be repeated. The string will terminate, however, once an input character is encountered
that does not match any of the characters within the brackets. A null character (\0) will then automatically be
added to the end of the string.

EXAMPLE 4.7 This example illustrates the use of the scanf function to enter a string consisting of uppercase letters
and blank spaces. The string will be of undetermined length, but it will be limited to 79 characters (actually, 80 characters
including the null character that is added at the end). Notice the blank space that precedes the % sign.

#include <stdio.h>
main()

{
char line[80];

scanf(* %[ABCDEFGHIJKLMNOPQRSTUVWXYZ]}*, line);

If the string
NEW YORK CITY

is entered from the standard input device when the program is executed, the entire string will be assigned to the array 1ine
since the string is comprised entirely of uppercase letters and blank spaces. If the string were written as

New York City

however, then only the single letter N would be assigned to 1ine, since the first lowercase letter (in this case,) would be
interpreted as the first character beyond the string. It would, of course, be possible to include both uppercase and
lowercase characters within the brackets, but this becomes cumbersome.

A variation of this feature which is often more useful is to precede the characters within the square
brackets by a circumflex (i.e., *). This causes the subsequent characters within the brackets to be interpreted
in the opposite manner. Thus, when the program is executed, successive characters will continue to be read
from the standard input device as long as each input character does not match one of the characters enclosed
within the brackets.

If the characters within the brackets are simply the circumflex followed by a newline character, then the
string entered from the standard input device can contain any ASCII characters except the newline character
(line feed). Thus, the user may enter whatever he or she wishes and then press the Enter key. The Enter
key will issue the newline character, thus signifying the end of the string.

CHAP. 4] DATA INPUT AND OUTPUT 75

EXAMPLE 48 Suppose a C program contains the following statements.

#include <stdio.h>

main()

{
char line[B80];

scanf (" %[~*\n]", line);

Notice the blank space preceding %[“\n], to ignore any unwanted characters that may have been entered previously.

When the scanf function is executed, a string of undetermined length (but not more than 79 characters) will be
entered from the standard input device and assigned to 1ine. There will be no restrictions on the characters that comprise
the string, except that they all fit on one line. For example, the string

The PITTSBURGH STEELERS is one of America's favorite football teams!

could be entered from the keyboard and assigned to line.

4.5 MORE ABOUT THE scanf FUNCTION

This section contains some additional details about the scanf function. Beginning C programmers may wish
to skip over this material for the time being.

The consecutive nonwhitespace characters that define a data item collectively define a field. It is possible
to limit the number of such characters by specifying a maximum field width for that data item. To do so, an
unsigned integer indicating the field width is placed within the contro! string, between the percent sign (%) and
the conversion character.

The data item may contain fewer characters than the specified field width. However, the number of
characters in the actual data item cannot exceed the specified field width. Any characters that extend beyond
the specified field width will not be read. Such leftover characters may be incorrectly interpreted as the
components of the next data item.

EXAMPLE 4.9 The skeletal structure of a C program is shown below.

#include <stdio.h>

main()

{

int a, b, c;

scanf ("%3d %3d %3d", &a, &b, &c);

When the program is executed, three integer quantities will be entered from the standard input device (the keyboard).
Suppose the input data items are entered as

123

76 DATA INPUT AND OUTPUT [CHAP. 4

Then the following assignments will result:

If the data had been entered as
123 456 789
Then the assignments would be
a = 123, b =456, c = 789
Now suppose that the data had been entered as
123456789
Then the assignments would be
a = 123, b = 456, ¢ = 789

as before, since the first three digits would be assigned to a, the next three digits to b, and the last three digits to c.
Finally, suppose that the data had been entered as

1234 5678 9
The resulting assignments would now be
a = 123, b=4, c =567

The remaining two digits (8 and 9) would be ignored, unless they were read by a subsequent scanf statement.

EXAMPLE 4.10 Consider a C program that contains the following statements.

#include <stdio.h>

main()

{
int i;
float x;
char c¢;

scanf ("%3d %5f %c", &i, &x, &c);

}
If the data items are entered as
10 256.875 T

when the program is executed, then 10 will be assigned to i, 256.8 will be assigned to x and the character 7 will be
assigned to c. The remaining two input characters (5 and T) will be ignored.

CHAP. 4] DATA INPUT AND OUTPUT 77

Most versions of C allow certain conversion characters within the control string to be preceded by a
single-letter prefix, which indicates the length of the corresponding argument. For example, an 1 (lowercase
L) is used to indicate either a signed or unsigned long integer argument, or a double-precision argument.
Similarly, an h is used to indicate a signed or unsigned short integer. Also, some versions of of C permit the
use of an uppercase L to indicate a long double.

EXAMPLE 4.11 Suppose the following statements are included in a C program.

#include <stdio.h>
main()

{
short ix,iy;
long 1x,ly;
double dx,dy;

scanf ("%hd %ld %1f*, &ix, &lx, &dx);

scanf (*%3ho %71x %15le", &iy, &ly, &dy);

}

The control string in the first scanf function indicates that the first data item will be assigned to a short decimal integer
variable, the second will be assigned to a long decimal integer variable, and the third will be assigned to a double-
precision variable. The control string in the second scanf function indicates that the first data item will have a maximum
field width of 3 characters and it will be assigned to a short octal integer variable, the second data item will have a
maximum field width of 7 characters and it will be assigned to a long hexadecimal integer variable, and the third data item
will have a maximum field width of 15 characters and it will be assigned to a double-precision variable.

Some versions of C permit the use of uppercase conversion characters to indicate long integers (signed or
unsigned). This feature may be available in addition to the prefix "1", or it may replace the use of the prefix.

EXAMPLE 4.12 Consider once again the skeletal outline of the C program given in Example 4.11. With some versions
of C, it may be possible to write the scanf functions somewhat differently, as follows.

#include <stdio.h>

main()

{
short ix,iy;
long 1x,ly;
double dx,dy;

scanf("%hd %D %f", &ix, &lx, &dx};

scanf("%3ho %7X %15e“, &iy, &ly, &dy);

78 DATA INPUT AND OUTPUT [CHAP. 4
Notice the use of uppercase conversion characters (in the scanf functions) to indicate long integers. The interpretation of
the scanf functions will be the same as in the previous example.

In most versions of C it is possible to skip over a data item, without assigning it to the designated variable

or array. To do so, the % sign within the appropriate control group is followed by an asterisk (*). This feature
is referred to as assignment suppression.

EXAMPLE 4.13 Here is a variation of the scanf features shown in Example 4.6.

#include <stdio.h>

main()

{
char item[20};
int partno;
float cost;

scanf (" %s %*d %f", item, &partno, &cost);

Notice the asterisk in the second character group.
If the corresponding data items are

fastener 12345 0.05

then fastener will be assigned to item and 0.05 will be assigned to cost. However 12345 will not be assigned to
partno because of the asterisk, which is interpreted as an assignment suppression character.

Note that the integer quantity 12345 will be read into the computer along with the other data items, even though it is
not assigned to its corresponding variable.

If the control string contains multiple character groups without interspersed whitespace characters, then
some care must be taken with c-type conversion. In such cases a whitespace character within the input data
will be interpreted as a data item. To skip over such whitespace characters and read the next nonwhitespace
character, the conversion group %1s should be used.

EXAMPLE 4.14 Consider the following skeletal outline of a C program.

#include <stdio.h>
main()

{

char c¢1,c2,c3;

scanf (" %C%c%Cc", &c1, &c2, &c3);

1f the input data consisted of

CHAP. 4] DATA INPUT AND OUTPUT 79

abec
(with blank spaces between the letters), then the following assignments would result:
cl = a, c2 = <blank space>, c3 =b
If the scanf function were written as
scanf (" %sc%1s%1s*, &cl1, &c2, &c3)
however, then the same input data would result in the following assignments:
¢l = a, c2 = b, c3 =¢

as intended.
Note that there are some other ways around this problem. We could have written the scanf function as

scanf(" %c %c %c", &ci1, &c2, &c3);

with blank spaces separating the %c terms, or we could have used the original scanf function but written the input data as
consecutive characters without blanks; i.e., abc.

Unrecognized characters within the control string are expected to be matched by the same characters in

the input data. Such input characters will be read into the computer, but not assigned to an identifier.
Execution of the scanf function will terminate if a match is not found.

EXAMPLE 4.15 Consider the following skeletal outline.

#include <stdio.h>

main()

{
int i,
float x;

scanf("%d a %f", &i, &x);

If the input data consist of
1az2.0
then the decimal integer 1 will be read in and assigned to i, the character a will be read in but subsequently ignored, and
the floating-point value 2.0 will be read in and assigned to x.
On the other hand, if the input were entered simply as

12.0

then the scanf function would stop executing once the expected character (a) is not found. Therefore, i would be
assigned the value 1 but x would automatically represent the value 0.

80 DATA INPUT AND OUTPUT [CHAP. 4

You should understand that there is some variation in the features supported by the scanf function from
one version of C to another. The features described above are quite common and are available in virtually all
versions of the language. However, there may be slight differences in their implementation. Moreover,
additional features may be available in some versions of the language.

4.6 WRITING OUTPUT DATA — THE printf FUNCTION

Output data can be written from the computer onto a standard output device using the library function
printf. This function can be used to output any combination of numerical values, single characters and
strings. It is similar to the input function scanf, except that its purpose is to display data rather than to enter it
into the computer. That is, the printf function moves data from the computer’s memory to the standard
output device, whereas the scanf function enters data from the standard input device and stores it in the
computer’s memory.

In general terms, the printf function is written as

printf{control string, argl?, arg2, . . . , argn)

where control string refers to a string that contains formatting information, and arg7, arg2, . . . ,
argn are arguments that represent the individual output data items. The arguments can be written as
constants, single variable or array names, or more complex expressions. Function references may also be
included. In contrast to the scanf function discussed in the last section, the arguments in a printf function
do not represent memory addresses and therefore are not preceded by ampersands.

The control string consists of individual groups of characters, with one character group for each output
data item. Each character group must begin with a percent sign (%). In its simplest form, an individual
character group will consist of the percent sign, followed by a conversion character indicating the type of the
corresponding data item.

Multiple character groups can be contiguous, or they can be separated by other characters, including
whitespace characters. These “other” characters are simply transferred directly to the output device, where
they are displayed. The use of blank spaces as character-group separators is particularly common.

Several of the more frequently used conversion characters are listed in Table 4-2.

Table 4-2 Commonly Used Conversion Characters for Data Output

Conversion
Character Meaning
c Data item is displayed as a single character
d Data item is displayed as a signed decimal integer
e Data item is displayed as a floating-point value with an exponent
f Data item is displayed as a floating-point value without an exponent
g Data item is displayed as a floating-point value using either e-type or f-type conversion,
depending on value. Trailing zeros and trailing decimal point will not be displayed.
i Data item is displayed as a signed decimal integer
0 Data item is displayed as an octal integer, without a leading zero
S Data item is displayed as a string
u Data item is displayed as an unsigned decimal integer
X Data item is displayed as a hexadecimal integer, without the leading Ox

Note that some of these characters are interpreted differently than with the scanf funtion (see Table 4-1).

CHAP. 4] DATA INPUT AND OUTPUT 81

EXAMPLE 4.16 Here is a simple program that makes use of the printf function.

#include <stdio.h>
#include <math.h>
main() /* print several floating-point numbers */

{
float 1 = 2.0, j = 3.0;
printf(*sf %f %f %f*, i, j, i+j, sqrt(i+j));

}

Notice that the first two arguments within the printf function are single variables, the third argument is an arithmetic
expression, and the last argument is a function reference that has a numeric expression as an argument.
Executing the program produces the following output:

2.000000 3.000000 5.000000 2.236068

EXAMPLE 4.17 The following skeletal outline indicates how several different types of data can be displayed using the
printf function.

#include <stdio.h>

main()

{
char item{20];
int partno;
float cost;

printf("%s %d %f", item, partno, cost);

}

Within the printf function, the control string is “%s %d %f*. It contains three character groups. The first character
group, %s, indicates that the first argument (item) represents a string. The second character group, %d, indicates that the
second argument (partno) represents a decimal integer value, and the third character group, %f, indicates that the third

argument (cost) represents a floating-point value.

Notice that the arguments are not preceded by ampersands. This differs from the scanf function, which requires
ampersands for all arguments other than array names (see Example 4.5).

Now suppose that name, partno and cost have been assigned the values fastener, 12345 and 0.05,
respectively, within the program. When the printf statement is executed, the following output will be generated.

fastener 12345 0.050000

The single space between data items is generated by the blank spaces that appear within the control string in the printf

statement.
Suppose the printf statement had been written as

printf(“%s%d%f", item, partno, cost);
This printf statement is syntactically valid, though it causes the output items to run together; i.e.,
Tastener123450.050000

The f-type conversion and the e-type conversion are both used to output floating-point values. However,
the latter causes an exponent to be included in the output, whereas the former does not.

82 DATA INPUT AND OUTPUT [CHAP. 4

EXAMPLE 4.18 The following program generates the same floating-point output in two different forms.

#include <stdio.h>

main() /* display floating-point output 2 different ways */

{
double x = 5000.0, y = 0.0025;
printf ("%t %t % %f\n\n", x, y, x*y, x/y);
printf(“%e %e %e %e", x, y, x*y, x/y);

}

Both printf statements have the same arguments. However, the first printf statement makes use of f-type conversion,
whereas the second printf statement uses e-type conversion. Also, notice the repeated newline character in the first
printf statement. This causes the output to be double-spaced, as shown below,

When the program is executed, the following output is generated.

5000.000000 0.002500 12.500000 2000000.000000
5.000000e+03 2.500000e-03 1.250000e+01 2.000000e+06

The first line of output shows the quantities represented by x, y, x*y and x/y in standard floating-point format, without
exponents. The second line of output shows these same quantities in a form resembling scientific notation, with
exponents.

Notice that six decimal places are shown for each value. The number of decimal places can be altered, however, by
specifying the precision as a part of each character group within the control string (more about this in Sec. 4.7).

The printf function interprets s-type conversion differently than the scanf function. In the printf
function, s-type conversion is used to output a string that is terminated by the null character (10). Whitespace
characters may be included within the string.

EXAMPLE 4.19 Reading and Writing a Line of Text Here is a short C program that will read in a line of text and
then write it back out, just as it was entered. The program illustrates the syntactic differences in reading and writing a
string that contains a variety of characters, including whitespace characters.

#include <stdio.h>

main() /* read and write a line of text */
{

char line{B0];

scanf(" %{~\n)", line);

printf("%s*, line);

}

Notice the difference in the control strings within the scanf function and the printf function.
Now suppose that the following string is entered from the standard input device when the program is executed.

The PITTSBURGH STEELERS is one of America's favorite football teams!

This string contains lowercase characters, uppercase characters, punctuation characters and whitespace characters. The
entire string can be entered with the single scanf function, as long as it is terminated by a newline character (by pressing
the Enter key). The printf function will then cause the entire string to be displayed on the standard output device, just
as it had been entered. Thus, the message

The PITTSBURGH STEELERS is one of America's favorite football teams!

would be generated by the computer.

CHAP. 4] DATA INPUT AND OUTPUT 83

A minimum field width can be specified by preceding the conversion character by an unsigned integer. If
the number of characters in the corresponding data item is less than the specified field width, then the data
item will be preceded by enough leading blanks to fill the specified field. If the number of characters in the
data item exceeds the specified field width, however, then additional space will be allocated to the data item,
so that the entire data item will be displayed. This is just the opposite of the field width indicator in the scanf
function, which specifies a maximum field width.

EXAMPLE 4.20 The following C program illustrates the use of the minimum field width feature.

#include <stdio.h>

main() /* minimum field width specifications */

{
int i = 12345;
float x = 345.678;

printf("%3d %5d %8d\n\n", i, i, 1i);
printf("%3f %10f %13f\n\n", x, x, X);
printf("%3e %13e %16e", x, X, X);

}

Notice the double newline characters in the first two printf statements. They will cause the lines of output to be double

spaced, as shown below.
When the program is executed, the following output is generated.

12345 12345 12345
345.678000 345.678000 345,678000
3.456780e+02 3.456780e+02 3.456780e+02

The first line of output displays a decimal integer using three different minimum field widths (three characters, five
characters and eight characters). The entire integer value is displayed within each field, even if the field width is too small
(as with the first field in this example).

The second value in the first line is preceded by one blank space. This is generated by the blank space separating the
first two character groups within the control string.

The third value is preceded by four blank spaces. One blank space comes from the blank space separating the last
two character groups within the control field. The other three blank spaces fill the minimum field width, which exceeds
the number of characters in the output value (the minimum field width is eight, but only five characters are displayed).

A similar situation is seen in the next two lines, where the floating-point value is displayed using f-type conversion

(in line 2) and e-type conversion (line 3).

EXAMPLE 4.21 Here is a variation of the program presented in Example 4.20, which makes use of g-type conversion.

#include <stdio.h>

main() /* minimum field width specifications */

{
int i = 12345;
float x = 345.678;

printf(*%3d %5d %8d\n\n", i, i, 1i);
printf("%3g %10g %13g\n\n", x, x, X);
printf(*%3g %13g %16g", x, X, X);

84 DATA INPUT AND OUTPUT [CHAP. 4

Execution of this program causes the following output to be displayed.
12345 12345 12345
345.678 345.678 345.678
345.678 345.678 345.678

The floating-point values are displayed with an f-type conversion, since this results in a shorter display. The minimum
field widths conform to the specifications within the control string.

4.7 MORE ABOUT THE printf FUNCTION

This section contains additional details about the printf function. Beginning C programmers may wish to
skip over this material for the time being.

We have already learned how to specify a minimum field width in a printf function. It is also possible
to specify the maximum number of decimal places for a floating-point value, or the maximum number of
characters for a string. This specification is known as precision. The precision is an unsigned integer that is
always preceded by a decimal point. If a minimum field width is specified in addition to the precision (as is
usually the case), then the precision specification follows the field width specification. Both of these integer
specifications precede the conversion character.

A floating-point number will be rounded if it must be shortened to conform to a precision specification.

EXAMPLE 4.22 Here is a program that illustrates the use of the precision feature with floating-point numbers.

#include <stdio.h>

main() /* display a floating-point number with several different precisions */

{
float x = 123.456;
printf(*%7f %7.3F %7.1f\n\n", X, X, X);
printf("%12e %12.5¢ %12.3e", x, x, X};
}

When this program is executed, the following output is generated.
123.456000 123.456 123.5
1.234560e+02 1.23456e+02 1.235e+02

The first line is produced by f-type conversion. Notice the rounding that occurs in the third number because of the
precision specification (one decimal place). Also, notice the leading blanks that are added to fill the specified minimum *
field width (seven characters).

The second line, produced by e-type conversion, has similar characteristics. Again, we see that the third number is
rounded to conform to the specified precision (three decimal places). Also, note the leading blanks that are added to fill
the specified minimum field width (12 characters).

A minimum field width specification need not necessarily accompany the precision specification. It is
possible to specify the precision without the minimum field width, though the precision must still be preceded
by a decimal point.

EXAMPLE 4.23 Now let us rewrite the program shown in the last example without any minimum field width
specifications, but with precision specifications.

CHAP. 4] DATA INPUT AND OUTPUT 85

#include <stdio.h>

main() /* display a floating-point number with several different precisions */

{
float x = 123.456;
printf(“%f %.3f %.1f\n\n", x, x, X);
printf(°"%e %.5e¢ %.3e", x, X, X);

}

Execution of this program produces the following output.
123.456000 123.456 123.5
1.234560e+02 1.23456e+02 1.235e+02

Notice that the third number in each line does not have multiple leading blanks, since there is no minimum field width that
must be satisfied. In all other respects, however, this output is the same as the output generated in the last example.

Minimum field width and precision specifications can be applied to character data as well as numerical
data. When applied to a string, the minimum field width is interpreted in the same manner as with a numerical
quantity; i.e., leading blanks will be added if the string is shorter than the specified field width, and additional
space will be allocated if the string is longer than the specified field width. Hence, the field width
specification will not prevent the entire string from being displayed.

However, the precision specification will determine the maximum number of characters that can be
displayed. If the precision specification is less than the total number of characters in the string, the excess
right-most characters will not be displayed. This will occur even if the minimum field width is larger than the
entire string, resulting in the addition of leading blanks to the truncated string.

EXAMPLE 4.24 The following program outline illustrates the use of field width and precision specifications in
conjunction with string output.

#include <stdio.h>
main()

{

char line[12];

printf(*"%10s %15s %15.5s %.5s", line, line, line, line);
}

Now suppose that the string hexadecimal is assigned to the character array 1ine. When the program is executed, the
following output will be generated.

hexadecimal hexadecimal hexad hexad

The first string is shown in its entirety, even though this string consists of 11 characters but the field width specification is
only 10 characters. Thus, the first string overrides the minimum field width specification. The second string is padded
with four leading blanks to fill out the 15-character minimum; hence, the second string is right justified within its field.
The third string consists of only five nonblank characters because of the five-character precision specification; however,
10 leading blanks are added to fill out the minimum field width specification, which is 15 characters. The last string also
consists of five nonblank characters. Leading blanks are not added, however, because there is no minimum field width
specification.

86 DATA INPUT AND OUTPUT [CHAP. 4

Most versions of C permit the use of prefixes within the control string to indicate the length of the
corresponding argument. The allowable prefixes are the same as the prefixes used with the scanf function.
Thus, an 1 (lowercase) indicates a signed or unsigned integer argument, or a double-precision argument; an h
indicates a signed or unsigned short integer. Some versions of C permit an L (uppercase) to indicate a long
double.

EXAMPLE 4.25 Suppose the following statements are included in a C program.

#include <stdio.h>
main ()

{

short a, b;
long c, d;

printf("%5hd %6hx %8lo %lu", a, b, c, d);

The control string indicates that the first data item will be a short decimal integer, the second will be a short
hexadecimal integer, the third will be a long octal integer, and the fourth will be a long unsigned (decimal) integer. Note
that the first three fields have minimum field width specifications, but the fourth does not.

Some versions of C allow the conversion characters X, E and G to be written in uppercase. These
uppercase conversion characters cause any letters within the output data to be displayed in uppercase. (Note
that this use of uppercase conversion characters is distinctly different than with the scanf function.)

EXAMPLE 4.26 The following program illustrates the use of uppercase conversion characters in the printf function.

#include <stdio.h>

main() /* use of uppercase conversion characters */

{
int a = Ox80ec;
float b = 0.3e-12;

printf("%4x %10.2e\n\n", a, b);
printf(“%4X %10.2E", a, b);
}

Notice that the first printf statement contains lowercase conversion characters, whereas the second printf statement
contains uppercase conversion characters.
When the program is cxecuted, the following output is generated.

80ec 3.00e-13
B0EC 3.00E-13

The first quantity on each line is a hexadecimal number. Note that the letters ec (which are a part of the hexadecimal
number) are shown in lowercase on the first line, and in uppercase on the second line.

The second quantity on each line is a decimal floating-point number which includes an exponent. Notice that the
letter e, which indicates the exponent, is shown in lowercase on the first line and uppercase on the second.

You are again reminded that the use of uppercase conversion characters is not supported by all compilers.

CHAP. 4] DATA INPUT AND QUTPUT 87

In addition to the field width, the precision and the conversion character, each character group within the
control string can include a flag, which affects the appearance of the output. The flag must be placed
immediately after the percent sign (%). Some compilers allow two or more flags to appear consecutively,
within the same character group. The more commonly used flags are listed in Table 4-3.

Table 4-3 Commonly Used Flags

Flag Meaning

- Data item is left justified within the field (blank spaces required to fill the minimum field
width will be added affer the data item rather than before the data item).

+ A sign (either + or -) will precede each signed numerical data item. Without this flag, only
negative data items are preceded by a sign.
0 Causes leading zeros to appear instead of leading blanks. Applies only to data items that

are right justified within a field whose minimum size is larger than the data item.
(Note: Some compilers consider the zero flag to be a part of the field width specification
rather than an actual flag. This assures that the 0 is processed last, if multiple flags are
present.)
' ' (blank space)
A blank space will precede each positive signed numerical data item. This flag is
overridden by the + flag if both are present.
(with 0- and x-type conversion)
Causes octal and hexadecimal data items to be preceded by 0 and 0x, respectively.
(with e-, T- and g-type conversion)
Causes a decimal point to be present in all floating-point numbers, even if the data item is
a whole number. Also prevents the truncation of trailing zeros in g-type conversion.

EXAMPLE 4.27 Here is a simple C program that illustrates the use of flags with integer and floating-point quantities.

#include <stdio.h>

main() /* use of flags with integer and floating-point numbers */
{

int 1 = 123;

float x = 12,0, y = -3.3;

printf{":%6d %7.0f %10.1e:\n\n", i, x, y);
printf(":%-6d %-7.0f %-10.1e:\n\n", i, x, y);
printf(":%+6d %+7.0f %+10.1e:\n\n", i, x, y);
printf(":%-+6d %-+7.0f %—+10.te:\n\n", i, x, y);
printf(":%7.0f %#7.0T %79 %#79:", X, X, Y, Y);

}

When the program is executed, the following output is produced. (The colons indicate the beginning of the first field
and the end of the last field in each line.)

123 12 -3.3e+00:
:123 12 -3.3e+00

+123 +12 -3.3e+00:
1+123 +12 -3.3e+00

12 12. -3.3 -3.30000:

88 DATA INPUT AND OUTPUT [CHAP. 4

The first line illustrates how integer and floating-point numbers appear without any flags. Each number is right justified
within its respective field. The second line shows the same numbers, using the same conversions, with a - flag included
within each character group. Note that the numbers are now left justified within their respective fields. The third line
shows the effect of using a + flag. The numbers are now right justified, as in the first line, but each number (whether
positive or negative) is preceded by an appropriate sign.

The fourth line shows the effect of combining a - and a + flag. The numbers are now left justified and preceded by
an appropriate sign. Finally, the last line shows two floating-point numbers, each displayed first without and then with the
flag. Note that the effect of the flag is to include a decimal point in the number 12. (which is printed with f-type
conversion), and to include the trailing zeros in the number -3. 300000 (printed with g-type conversion).

EXAMPLE 4.28 Now consider the following program, which displays decimal, octal and hexadecimal numbers.

#include <stdio.h>

main() /* use of flags with unsigned decimal, octal and hexadecimal numbers */

{
int i = 1234, j = 01777, k = Oxa08c;

printf(":%8u %80 %8x:\n\n", i, j, k);

printf(":%-8u %80 %-8x:\n\n", i, j, kK);

printf (" :%#8u %#B0 HHBX:\n\n', i, j, k);

printf(":%08u %080 %08X:\n\n", 1, j, k);
}

Execution of this program results in the following output. (The colons indicate the beginning of the first field and the
end of the last field in each line.)

1234 1777 a08c:
11234 1777 a08c

1234 01777 0XA08C:
: 00001234 00001777 0000OAQS8C:

The first line illustrates the display of unsigned integer, octal and hexadecimal output without any flags. Note that the
numbers are right justified within their respective fields. The second line shows what happens when you include a - flag
within each character group. Now the numbers are left justified within their respective fields.

In the third line we see what happens when the # flag is used. This flag causes the octal number 1777 to be preceded
by a 0 (appearing as 01777), and the hexadecimal number to be preceded by 0X (i.e., 0XA08C). Notice that the unsigned
decimal integer 1234 is unaffected by this flag. Also, notice that the hexadecimal number now contains uppercase
characters, since the conversion character was written in uppercase (X).

The last line illustrates the use of the 0 flag. This flag causes the fields to be filled with leading Os rather than leading
blanks. We again sce uppercase hexadecimal characters, in response to the uppercase conversion character (X).

EXAMPLE 4.29 The following program outline illustrates the use of flags with string output.

#include <stdio.h>

main()

{
char line[12];

printf(*:%15s %15.5s %.5s:\n\n", line, line, line);
printf(":%-15s %-15.5s %-.5s:", line, line, line);

CHAP. 4] DATA INPUT AND OUTPUT 89

Now suppose that the string 1ower-case is assigned to the character array 1ine. The following output will be generated
when the program is executed.

lower-case lower lower:
:lower-case lower lower:

The first line illustrates how strings are displayed when flags are not present, as explained in Example 4.24. The second
line shows the same strings, left justified, in response to the - flag in each character group.

Unrecognized characters within the control string will be displayed just as they appear. This feature
allows us to include labels and messages with the output data items, if we wish.

EXAMPLE 4.30 The following program illustrates how printed output can be labeled.

#include <stdio.h>

main() /* labeling of floating-point numbers */

{
float a = 2.2, b = -6.2, x1 = .005, x2 = -12.88;
printf("$%4.2f %7.1f%%\n\n*, a, b);
printf("x1=%7.3f x2=%7.3f", x1, x2);

This program causes the value of a (2. 2) to be preceded by a dollar sign ($), and the value of b (6. 2) to be followed by a
percent sign (%). Note the two consecutive percent signs in the first printf statement. The first percent sign indicates the

start of a character group, whereas the second percent sign is interpreted as a label.
The second printf statement causes the value of x1 to be preceded by the label x1=, and the value of x2 to be

preceded by the label x2=. Three blank spaces will separate these two labeled data items.
The actual output is shown below.

$2.20 —6.2%

xt= 0.005 x2=-12.880

Remember that there is some variation in the features supported by the printf function in different
versions of C. The features described in this section are very common, though there may be differences in the
way these features are implemented. Additional features are also available in many versions of the language.

4.8 THE gets AND puts FUNCTIONS

C contains a number of other library functions that permit some form of data transfer into or out of the
computer. We will encounter several such functions in Chap. 12, where we discuss data files. Before leaving
this chapter, however, we mention the gets and puts functions, which facilitate the transfer of strings
between the computer and the standard input/output devices.

Each of these functions accepts a single argument. The argument must be a data item that represents a
string. (e.g., a character array). The string may include whitespace characters. In the case of gets, the string
will be entered from the keyboard, and will terminate with a newline character (i.e., the string will end when
the user presses the Enter key).

The gets and puts functions offer simple alternatives to the use of scanf and printf for reading and
displaying strings, as illustrated in the following example.

90 DATA INPUT AND OUTPUT [CHAP. 4

EXAMPLE 4.31 Reading and Writing a Line of Text Here is another version of the simple program originally
presented in Example 4.19, that reads a line of text into the computer and then writes it back out in its original form.

#include <stdio.h>
main() /* read and write a line of text */

{
char 1line{80];

gets(line);
puts(line);

This program utilizes gets and puts, rather than scanf and printf, to transfer the line of text into and out of the
computer. Note that the syntax is simpler in the present program (compare carefully with the program shown in Example
4.19). On the other hand, the scanf and printf functions in the earlier program can be expanded to include additional
data items, whereas the present program cannot.

When this program is executed, it will behave in exactly the same manner as the program shown in Example 4.19.

4.9 INTERACTIVE (CONVERSATIONAL) PROGRAMMING

Many modern computer programs are designed to create an interactive dialog between the computer and the
person using the program (the “user”). These dialogs usually involve some form of question-answer
interaction, where the computer asks the questions and the user provides the answers, or vice versa. The
computer and the user thus appear to be carrying on some limited form of conversation.

In C, such dialogs can be created by alternate use of the scanf and printf functions. The actual
programming is straightforward, though sometimes confusing to beginners, since the printf function is used
both when entering data (to create the computer’s questions) and when displaying results. On the other hand,
scanf is used only for actual data entry.

The basic ideas are illustrated in the following example.

EXAMPLE 4.32 Averaging Student Exam Scores This example presents a simple, interactive C program that reads in
a student’s name and three exam scores, and then calculates an average score. The data will be entered interactively, with
the computer asking the user for information and the user supplying the information in a free format, as requested. Each
input data item will be entered on a separate line. Once all of the data have been entcred, the computer will compute the
desired average and write out all of the data (both the input data and the calculated average).

The actual program is shown below.

#include <stdio.h>

main() /* sample interactive program */

{
char name[20];
float scorel, score2, score3d, avg;

printf("Please enter your hame: "); /* enter name */
scanf (" %[~\n]*, name);

printf(*Please enter the first score: *); /* enter 1st score */
scanf ("%T", &scorel);

printf(“Please enter the second score: "); /* enter 2nd score */
scanf ("%f", &score2);

printf("Please enter the third score: "); /* enter 3rd score */

CHAP. 4] DATA INPUT AND OUTPUT 91

scanf ("%f", &score3);
avg = (scorel+score2+scored)/3; /* calculate avg */

printf("\n\nName: %-s\n\n", name); /* write output */
printf("Score 1: %-5.1f\n", scorel);

printf(“Score 2: %-5.1f\n", score2);

printf("Score 3: %-5.1f\n\n", score3);

printf ("Average: %-5.1f\n\n", avg);

Notice that two statements are associated with each input data item. The first is a printf statement, which generates a
request for the item. The second statement, a scanf function, causes the data item to be entered from the standard input
device (i.e., the keyboard).
After the student’s name and all three exam scores have been entered, an average exam score is calculated. The input
data and the calculated average are then displayed, as a result of the group of printf statements at the end of the program.
A typical interactive session is shown below. To illustrate the nature of the dialog, the user’s responses have been
underlined.

Please enter your name: Robert Smith
Please enter the first score: 88
Please enter the second score: 62.5
Please enter the third score: 90

Name: Robert Smith

Score 1: 88.0
Score 2: 62.5
Score 3: 90.0
Average: 80.2

Additional interactive programs will be seen in many of the programming examples presented in later chapters of this
book.

Review Questions

4.1 What are the commonly used input/output functions in C? How are they accessed?

4.2 What is the standard input/output header file called in most versions of C? How is the file included within a
program?

4.3 What is the purpose of the getchar function? How is it used within a C program?

4.4 What happens when an end-of-file condition is encountered when reading characters with the getchar function?
How is the end-of-file condition recognized?

4.5 How can the getchar function be used to read multicharacter strings?

4.6 What is the purpose of the putchar function? How is it used within a C program? Compare with the getchar
function.

4.7 How can the putchar function be used to write multicharacter strings?

4.8 What is a character-type array? What does each element of a character-type array represent? How are character-
type arrays used to represent multicharacter strings?

4.9 What is the purpose of the scanf function? How is it used within a C program? Compare with the getchar
function.

92

4.10

4.11

4.12

4.13
4.14

4.15

4.16

4.17

4.18
4.19

4.20

4.21

4.22
4.23

4.24

4.25

4.26
4.27

4.28
4.29

4.30

4.31

4.32

4.33

4.34

4.35

DATA INPUT AND OUTPUT [CHAP. 4

What is the purpose of the control string in a scanf function? What type of information does it convey? Of what
is the control string composed?

How is each character group within the control string identified? What are the constituent characters within a
character group?

If a control string within a scanf function contains multiple character groups, how are the character groups
separated? Are whitespace characters required?

If whitespace characters are present within a control string, how are they interpreted?

Summarize the meaning of the more commonly used conversion characters within the control string of a scant
function.

What special symbol must be included with the arguments, other than the control string, in a scanf function? In
what way arc¢ array names treated differently than other arguments?

When entering data via the scanf function, what relationships must there be between the data items and the
corresponding arguments? How are multiple data items separated from one another?

When entering data via the scanf function, must octal data be preceded by 0? Must hexadecimal data be
preceded by Ox (or 0X)? How must floating-point data be written?

When entering a string via the scanf function using an s-type conversion factor, how is the string terminated?
When entering a string via the scanf function, how can a single string which includes whitespace characters be
entered?

Summarize a convenient method for entering a string of undetermined length, which may contain whitespace
characters and all printable characters, and which is terminated by a carriage return. Answer this question relative
to the type of conversion required within the control string of a scanf function.

What is meant by a field?

How can the maximum field width for a data item be specified within a scanf function?

What happens if an input data item contains more characters than the maximum allowable field width? What if
the data item contains fewer characters?

How can short integer, long integer and double-precision arguments be indicated within the control string of a
scanf function?

How can long double arguments be indicated within the control string of a scanf function? Is this feature
available in most versions of C?7

How can the assignment of an input data item to its corresponding argument be suppressed?

If the control string within a scanf function contains multiple character groups without interspersed whitespace
characters, what difficulty can arise when using c-type conversion? How can this difficulty be avoided?

How are unrecognized characters within the control string of a scanf function interpreted?

What is the purpose of the printf function? How is it used within a C program? Compare with the putchar
function.

In what ways does the control string within a printf function differ from the control string within a scanf
function?

If the control string within a printf function contains multiple character groups, how are the character groups
separated? How are the separators interpreted?

Summarize the meaning of the more commonly used conversion characters within the control string of a printf
function. Compare with the conversion characters that are used in a scant function.

In a printf function, must the arguments (other than the contro! string) be preceded by ampersands? Compare
with the scanf function and explain any differences.

What is the difference between F-type conversion, e-type conversion and g-type conversion when outputting
floating-point data with a printf function?

Compare the use of s-type conversion in the printf and the scanf functions. How does s-type conversion differ
when processing strings containing whitespace characters?

CHAP. 4) DATA INPUT AND OUTPUT 93

4.36
4.37

4.38
4.39
4.40

441
442

4.43

4.44
4.45
4.46
447
4.48

4.49

4.50

4.51

4.52

4.53

How can the minimum field width for a data item be specified within the printf function?

What happens if an output data item contains more characters than the minimum field width? What if the data
item contains fewer characters? Contrast with the field width specifications in the scanf function,

What is meant by the precision of an output data item? To what types of data does this apply?

How can the precision be specified within a printf function?

What happens to a floating-point number if it must be shortened to conform to a precision specification? What
happens to a string?

Must a precision specification be accompanied by a minimum field width specification in a printf function?

How can short integer, long integer and double-precision arguments be indicated within the control string of a
printf function? How can long double arguments be indicated?

How are uppercase conversion characters interpreted differently than the corresponding lowercase conversion
characters in a printf function? To what types of conversion does this feature apply? Do all versions of C
recognize this distinction?

Summarize the purpose of the flags that are commonly used within the printf function.

Can two or more flags appear consecutively within the same character group?

How are unrecognized characters within the control string of a printf function interpreted?

How can labeled data items be generated by the printf function?

Summarize the use of the gets and puts functions to transfer strings between the computer and the standard
input/output devices. Compare the use of these functions with the string transfer features in the scanf and
printf statements.

Explain, in general terms, how an interactive dialog can be generated by repeated use of pairs of scanf and
printf functions.

Problems

A C program contains the following statements:
#include <stdio.h>
char a, b, c;
(a) Write appropriate getchar statements that will allow values for a, b and ¢ to be entered into the computer.

() Write appropriate putchar statements that will allow the current values of a, b and ¢ to be written out of
the computer (i.c., to be displayed).

Solve Prob. 4.50 using a single scanf function and a single printf function rather than the getchar and

putchar statements. Compare your answer with the solution to Prob. 4.50.

A C program contains the following statements:
#include <stdio.h>
char text[80];

(a) Write a for statement that will permit a 60-character message to be entered into the computer and stored in
the character array text. Include a reference to the getchar function in the for loop, as in Example 4.4.

(b) Write a for statement that will permit the first 60 characters of the character array text to be displayed.
Include a reference to the putchar function in the for loop, as in Example 4.4,

Modify the solution to Prob. 4.52(a) so that a character array whose length is unspecified can be read into the

computer. Assume that the message does not exceed 79 characters, and that it is automatically terminated by a

newline character (\n). (See Example 4.4.)

94

4.54

4.55

4.56

4.57

4.58

4.59

DATA INPUT AND OUTPUT [CHAP. 4

Solve Prob. 4.53 using a scanf statement in place of a for statement (see Example 4.8). What additional
information is provided by the method described in Prob. 4.53?

A C program contains the following statements:
#include <stdio.h>
int i, j, k;
Write an appropriate scanf function to enter numerical values for i, j and k, assuming
(@) The values for i, j and k will be decimal integers
(b) The value for i will be a decimal integer, j an octal integer and k a hexadecimal integer.
(¢) The values for i and j will be hexadecimal integers and k will be an octal integer.
A C program contains the following statements:
#include <stdio.h>
int i, j, k;
Write an appropriate scanf function to enter numerical values for i, j and k into the computer, assuming
(@) The values for i, j and k will be decimal integers not exceeding six characters each.
(b) The value for i will be a decimal integer, j an octal integer and k a hexadecimal integer, with each quantity
not exceeding 8 characters.
(c) The values for i and j will be hexadecimal integers and k will be an octal integer. Each quantity will be 7
or fewer characters.
Interpret the meaning of the control string in each of the following scanf functions.
(@) scanf("%121d %5hd %151f %15le”, &a, &b, &c, &d);
(b)) scanf(*%101x %6ho %5hu %141lu”, &a, &b, &c, &d);
(c) scanf("%12D %hd %15f %15e¢", &a, &b, &c, &d);
(@) scant('%8d %*d %121f %121f*, &a, &b, &c, &d);

A C program contains the following statements:
#include <stdio.h>
int i, j;
long ix;
short s;
unsigned u;
float x;
double dx;
char c;

For each of the following groups of variables, write a scanf function that will allow a set of data items to be read
into the computer and assigned to the variables. Assume that all integers will be read in as decimal quantities.

(@) 1i,}),xanddx (c) i,uandc
(b) 1i,ix, j,xandu (d) c,x,dxand s
A C program contains the following statements:

#include <stdio.h>

int i, j;

long ix;

short s;

unsigned u;

float x;

double dx;
char c;

CHAP. 4] DATA INPUT AND OUTPUT 95

4.60

4.61
4.62

4.63

4.64

4.65

Write an appropriate scant function to accommodate each of the following situations, assuming that all integers

will be read in as decimal quantities.

(a) Enter values for i, j, x and dx, assuming that each integer quantity does not exceed four characters, the
floating-point quantity does not exceed eight characters, and the double-precision quantity does not exceed
15 characters.

(6) Enter values for i, ix, j, x and u, assuming that each integer quantity does not exceed five characters, the
long integer does not exceed 12 characters, and the floating-point quantity does not exceed 10 characters.

(c) Enter values for i, u and c, assuming that each integer quantity does not exceed six characters.

(d) Enter values for c, x, dx and s, assuming that the floating-point quantity does not exceed nine characters,
the double-precision quantity does not exceed 16 characters and the short integer does not exceed six
characters.

A C program contains the following statements:
#include <stdio.h>

char text[80];
Write a scanf function that will allow a string to be read into the computer and assigned to the character array
text. Assume that the string does not contain any whitespace characters.
Solve Prob. 4.60 assuming that the string contains only lowercase letters, blank spaces and newline characters.

Solve Prob. 4.60 assuming that the string contains only uppercase letters, digits, dollar signs and blank spaces.

Solve Prob. 4.60 assuming that the string contains anything other than an asterisk (i.e., assume that an asterisk will
be used to indicate the end of the string).

A C program contains the following statements.
#include <stdio.h>
char a, b, c;
Suppose that $ is to be entered into the computer and assigned to a, * assigned to b and @ assigned to ¢. Show
how the input data must be entered for each of the following scanf functions.
(@) scanf("%c%c%c", &a, &b, &c);
(b) scanf("%c %c %c", &a, &b, &c);
(c) scanf ("%s%s%s*, &a, &b, &c);
(d) scanf("%s %s %s", &a, &b, &c);
(e) scanf("%1s%1s%1s", &a, &b, &c);

A C program contains the following statements.
#include <stdio.h>

int a, b;
float x, y;

Suppose the value 12 is to be entered into the computer and assigned to a, -8 assigned to b, 0.011 assigned to x
and —2.2 x 10 assigned to y. Show how the input data might most conveniently be entered for each of the
following scant functions.

(@) scanf("%d %d %f %f", &a, &b, &x, &y);
(b) scanf("%d %d %e %e", &a, &b, &x, &y);
(c) scanf(*%2d %2d %57 %6e”, &, &b, &x, &y);
(d) scanf ("%3d %3d %8f %B8e", &a, &b, &x, &y);

96

4.66

4.67

4.68

4.69

4.70
4.71

DATA INPUT AND OUTPUT [CHAP. 4

A C program contains the following statements:
#include <stdio.h>
int i, j, k;
Write a printf function for each of the following groups of variables or expressions. Assume all variables
represent decimal integers.
(@) 1i,jandk
& (1+3),01-kK
(c) sqrt(i + j),abs(i - k)
A C program contains the following statements:
#include <stdio.h>
int i, j, K;
Write a printf function for each of the following groups of variables or expressions. Assume all variables
represent decimal integers.
(@) i, j and k, with a minimum field width of three characters per quantity.
(b) (i + j), (i - k), with a minimum field width of five characters per quantity.

(c) sqrt(i + j), abs(i - k), with a minimum field width of nine characters for the first quantity, and
seven characters for the second quantity.

A C program contains the following statements:
#include <stdio.h>
float x, y, Z;

Write a printf function for each of the following groups of variables or expressions.
(@) x,yandz
& (x *y)(x-2)
(c) sgrt(x + y), fabs(x - z)
A C program contains the following statements:
#include <stdio.h>
float x, y, Z;
Write a printf function for each of the following groups of variables or expressions, using T-type conversion for
each floating-point quantity.
(@) x,yand z, with a minimum field width of six characters per quantity.
() (x +y), (x - z),with aminimum field width of eight characters per quantity.

(c) sqrt(x + y), abs(x - z), with a minimum field width of 12 characters for the first quantity and nine
characters for the second.

Repeat the previous problem using e-type conversion.
A C program contains the following statements:
#include <stdio.h>
float x, y, Z;
Write a printf function for each of the following groups of variables or expressions, using f-type conversion for
each floating-point quantity.

(@) x, y and z, with a minimum field width of eight characters per quantity, with no more than four decimal
places.

CHAP. 4] DATA INPUT AND OUTPUT 97

(b) (x + y), (x — z), with a minimum field width of nine characters per quantity, with no more than three
decimal places.

(c) sqrt(x + y), abs(x - z), with a minimum field width of 12 characters for the first quantity and 10
characters for the second. Display a maximum of four decimal places for each quantity.

4.72 A C program contains the following statements:
#include <stdio.h>
float x, y, Z;
Write a printf function for each of the following groups of variables or expressions, using e-type conversion for
each floating-point quantity.
(@) x,yand z, with a minimum field width of 12 characters per quantity, with no more than four decimal
places.
(b) (x + y), (x - z), with a minimum field width of 14 characters per quantity, with no more than five
decimal places.
(¢) sqrt(x + y), abs(x - z), with a minimum field width of 12 characters for the first quantity and 15
characters for the second. Display a maximum of seven decimal places for each quantity.
4.73 A C program contains the following statements:
#include <stdio.h>
int a = 0177, b = 055, ¢ = Oxa8, d = Ox1ff;
Write a printf function for each of the following groups of variables or expressions.
(@) a,b,candd
() (a +b),(c-d)
4.74 A C program contains the following statements:
#include <stdio.h>
int i, j;
long ix;
unsigned u;
float x;

double dx;
char c;

For each of the following groups of variables, write a printf function that will allow the values of the variables
to be displayed. Assume that all integers will be shown as decimal quantities.
(@) 1i,j,xanddx () i,uand c
() i,ix, j,xandu (d) ¢, x, dx and ix
4.75 A C program contains the following statements:
#include <stdio.h>
int i, j;
long 1ix;
unsigned u;
float x;

double dx;
char c;

Write an appropriate printf function for each of the following situations, assuming that all integers will be
displayed as decimal quantities.

98

4.76

4.77

4.78

(a)

(b)
(c)

(d)
(e)
0
F:4)
)

O]
0

DATA INPUT AND OUTPUT [CHAP. 4

Display the values of i, j, x and dx, assuming that each integer quantity will have a minimum field width
of four characters and each floating-point quantity is displayed in exponential notation with a total of at
least 14 characters and no more than eight decimal places.

Repeat part (a), displaying each quantity on a separate line.

Display the values of i, ix, j, x and u, assuming that each integer quantity will have a minimum field
width of five characters, the long integer will have a minimum field width of 12 characters and the floating-
point quantity will be have at least 10 characters with a maximum of five decimal places. Do not include
an exponent.

Repeat part (c), displaying the first three quantities on one line, followed by a blank line and then the
remaining two quantities on the next line.

Display the values of i, u and ¢, with a minimum field width of six characters for each integer quantity.
Place three blank spaces between each output quantity.

Display the values for j, u and x. Display the integer quantities with a minimum field width of five
characters. Display the floating-point quantity using f-type conversion, with a minimum field width of 11
and a maximum of four decimal places.

Repeat part (f), with each data item left justified within its respective field.
Repeat part (f), with a sign (either + or —) preceding each signed data item.
Repeat part (f), with leading zeros filling out the field for each of the integer quantities.

Repeat part (f), with a provision for a decimal point in the value of x regardless of its value.

Assume that i, j and k are integer variables, and that i represents an octal quantity, j represents a decimal
quantity and k represents a hexadecimal quantity. Write an appropriate printf function for each of the following

situations.

(a) Display the values for i, j and k, with a minimum field width of eight characters for each value.

(6) Repeat part (a) with each output data item left justified within its respective field.

(¢) Repeat part (a) with each output data item preceded by zeros (Ox, in the case of the hexadecimal quantity).

A C program contains the following variable declarations.

int i = 12345, j = -13579, k = -24680;
long ix = 123456789;

short sx = -2222;

unsigned ux = 5555;

Show the output resulting from each of the following printf statements.

(@
®)
()
(@
()
N

printf("%d %d %d %ld %d %u*, i, j, k, ix, sx, ux);

printf(*%3d %3d %3d\n\n%31d %3d %3u*, i, j, k, ix, sx, ux);
printf("%8d %8d %8d\n\n%151d %8d %B8u", i, j, k, ix, sx, ux);
printf(“%-8d %-8d\n%—8d %-151d\n%-8d %-8u", i, j, k, ix, sx, ux);
printf("%+8d %+8d\n%+8d %+151d\n%+8d %8u", i, j, k, ix, sx, ux);
printf("%08d %08d\n%08d %0151d\n%08d %08u*, i, j, k, ix, sx, ux);

A C program contains the following variable declarations.

int i = 12345, j = Oxabcd9, k = 077777;

Show the output resulting from each of the following printf statements.

(@)
(®)
(c)
(@)

printf("%d %x %0", i, j, K);
printf("%3d %3x %30", i, j, k);
printf ("%8d %8x %80", i, j, k);
printf("%-8d %-8x %80", i, j, k);

CHAP. 4] DATA INPUT AND OUTPUT

(e) printf(“%+8d %+8x %+80", i, j, k);
) printf("%08d %#8x %#80", i, j, k);

4.79 A C program contains the following variable declarations.
float a = 2.5, b = 0.0005, ¢ = 3000.;

Show the output resulting from each of the following printf statements.
(@) printf("sf %f %f", a, b, c);
(b) printf("%3f %3f %3f", a, b, ¢c);
(c) printf("%8f %8f %8f", a, b, ¢);
(d) printf(*%8.4f %8.47 %8.4f", a, b, C);
(e) printf("%8.3f %8.3f %8.3f", a, b, c);
1)) printf("%e %e %e", a, b, ¢);
(g) printf("%3e %3e %3e", a, b, c);
(h) printf("%12e %12e %12e", a, b, ¢);
(i) printf("%12.4e %12.4e %12.4e", a, b, ¢);
) printf("%8.2e %8.2e %8.2e", a, b, ¢);
(k) printf("%-8f %8f %-8f", a, b, c);
() printf("s+8f %+8f %+8f", a, b, c);
(m) printf("%08f %08f %08f", a, b, c);
(n) printf("%#8f %#8f %#8f", a, b, c);
(0) printf(*%g %g %g", a, b, c);
(p) printf(“s#g %#g %#g', a, b, c);
4.80 A C program contains the following variable declarations.
char ¢1 = 'A', ¢2 = 'B', ¢3 = 'C';
Show the output resulting from each of the following printf statements.
(@) printf("%sc %c %c", c1, c2, c3);
() printf("sc%c%c", c¢1, c2, ¢3);
(c) printf(“%3c %3c %3c*, c1, c2, c3);
(d) printf("%3c%3c%3c", c1, c2, ¢3);
(e) printf(*"c1=%c c2=%c c3=%c", ci, c2, c3);

4.81 A C program contains the following statements.
#include <stdio.h>
char text[80]};
Write a printf function that will allow the contents of text to be displayed in the following ways.
(a) Entirely on one line.
() Only the first eight characters.
(¢) The first eight characters, preceded by five blanks.
(d) The first eight characters, followed by five blanks.
482 A C program contains the following array declaration.

char text(80];

Suppose that the following string has been assigned to text.

100

4.83

4.84

DATA INPUT AND OUTPUT

Programming with C can be a challenging creative activity.

Show the output resulting from the following printf statements.

(@) printf("%s", text); (d) printf("%18.7s", text);
(b) printf(*%18s*, text); (e) printf(“%-18.7s*, text);
(c) printf(*%.18s", text);

Write the necessary scanf or printf statements for each of the following situations.

(a) Generate the message

Please enter your name:

Then enter the name on the same line. Assign the name to a character-type array called name.

[CHAP. 4

(b) Suppose that x1 and x2 are floating-point variables whose values arc 8.0 and -2.5, respectively. Display

the values of x1 and x2, with appropriate labels; i.e., generate the message

x1 = 8.0 x2 = -2.5

(¢) Suppose that a and b are integer variables. Prompt the user for input values of these two variables, then

display their sum. Label the output accordingly.

Determine which conversion characters are available with your particular version of C. Also, determine which

flags are available for data output.

Chapter 5

Preparing and Running a Complete C Program

By now we have learned enough about C to write complete, though simple, C programs. We will therefore
pause briefly from our coverage of new features and devote some attention to the planning, writing and
execution of a complete C program. In addition, we will discuss some methods for detecting and correcting
the different types of errors that can occur in improperly written programs.

Our attention will be directed toward the use of Version 4.5 of Borland International’s Turbo C++,
running within the Windows operating environment (remember that C++ includes a full implementation of
standard ANSI C, as discussed in Sec. 1.5). We emphasize this particular version of C because of its
widespread popularity on personal computers, its low cost, and because it is representative of contemporary C
usage on many different computers.

5.1 PLANNING A C PROGRAM

It is essential that the overall program strategy be completely mapped out before any of the detailed
programming actually begins. This permits you to concentrate on the general program logic, without being
concerned with the syntactic details of the actual instructions. Once the overall program strategy has been
clearly established, the details associated with the individual program statements can be considered. This
approach is generally referred to as “top-down” programming. With large programs, this entire process might
be repeated several times, with more programming detail added at each stage.

Top-down program organization is normally carried out by developing an informal outline, consisting of
phrases or sentences that are part English and part C. In the initial stages of program development the amount
of C is minimal, consisting only of major program components, such as function headings, function
references, braces defining compound statements, and portions of control statements describing major
program structures. Additional detail is then provided by descriptive English material which is inserted
between these elements, often in the form of program comments. The resulting outline is usually referred to
as pseudocode.

EXAMPLE 5.1 Compound Interest A common problem in personal finance is that of determining how much money
will accumulate in a bank account after n years if a known amount, P, is deposited initially and the account collects
interest at a rate of » percent per year, compounded annually. The answer to this question can be determined by the well-
known formula

F=P(+iy

where F represents the future accumulation of money (including the original sum, P, which is known as the principal) and
i is the decimal representation of the interest rate; i.e., i = r/100 (for example, an interest rate of r = 5% would correspond
to i = 0.05).

Consider the organization of a C program that will solve this problem. The program will be based upon the
following general outline.

1. Declare the required program variables.
2. Read in values for the principal (P), the interest rate (») and the number of years (»).

3. Calculate the decimal representation of the interest rate (i), using the formula

{=r/100

101

102 PREPARING AND RUNNING A COMPLETE C PROGRAM

4. Determine the future accumulation (F) using the formula
F=P(l+)"
S. Display the calculated value for F.
Here is the program outline in the form of pseudocode.
/* compound interest calculations */
main()

{
/* declare the program variables */

/* read in values for P, r and n */
/* calculate a value for i */
/* calculate a value for F */

/* display the calculated value for F */
}

[CHAP. 5

Each of these steps appears very simple when viewed from the top. However, some steps require more detail before
they can actually be programmed. For example, the data input step will be carried out interactively. This will require
some dialog generated by pairs of printf and scant statements, as explained in the Chap. 4. Moreover, C does not have

an exponentiation operator. Therefore, some additional detail will be required in order to evaluate the formula

F=P(+)"

Here is a more detailed version of the above outline.
/* compound interest calculations */
main()

{

/* declare p, r, n, i and f to be floating-point variables */

/* write a prompt for p and then read in its value */
/* write a prompt for r and then read in its value */
/* write a prompt for n and then read in its value */

/* calculate i = r/100 */
/* calculate £ = p (1 + i)N as follows:
T = p * pow((1+i),n)
where pow is a library function for exponentiation */

/* display the value for f, with an accompanying label */
}

This outline involves more detail than is actually necessary for a program this simple, though it does illustrate the top-

down approach to program development.

We will consider the detailed development and implementation of this program later in this chapter, in Examples 5.2,

5.4 and5.5.

Another method that is sometimes used when planning a C program is the “bottom-up” approach. This
method may be useful for programs that make use of self-contained program modules (e.g., user-defined
functions). The bottom-up approach involves the detailed development of these program modules early in the
planning process. The overall program development is then based upon the known characteristics of these

available program modules.

CHAP. 5] PREPARING AND RUNNING A COMPLETE C PROGRAM 103

In practice we often use both approaches: top-down for the overall program planning, bottom-up in
developing individual modules before the main part of the program, and top-down with respect to the
development of each individual module.

5.2 WRITING A C PROGRAM

Once an overall program strategy has been formulated and a program outline has been written, attention can
be given to the detailed development of a working C program. At this point the emphasis becomes one of
translating each step of the program outline (or each portion of the pseudocode) into one or more equivalent C
instructions. This should be a straightforward activity provided the overall program strategy has been thought
through carefully and in enough detail.

You should understand, however, that there is more to writing a complete C program than simply
arranging the individual declarations and statements in the right order and then punctuating them correctly.
Attention should also be given to including certain additional features that will improve the readability of the
program and its resulting output. These features include the logical sequencing of the statements, the use of
indentation and whitespace, the inclusion of comments and the generation of clearly labeled output.

The selection of the program statements and their logical sequencing within the program is, to a large
extent, determined by the underlying program logic. Often, however, there will be several different choices
available for obtaining the same end result. This is particularly true of more complex programs that involve
the use of conditional or repeated program segments. In such cases, the manner in which the program is
organized can have a major effect on the logical clarity of the program and the efficiency of execution.
Therefore it is important that the statements be selected and sequenced in the most effective manner. We will
say more about this in Chap. 6, where we discuss the various types of conditional and repetitive features that
are available in C.

The use of indentation is closely related to the sequencing of groups of statements within a program.
Whereas sequencing affects the order in which a group of operations is carried out, indentation illustrates the
subordinate nature of individual statements within a group. In addition, blank lines are sometimes used to
separate related groups of statements. The value of the indentation and the blank lines should be obvious,
even in the simple programs presented earlier in this book. This will become even more apparent later, as we
encounter C programs whose structure is more complex.

Comments should always be included within a C program. If written properly, comments can provide a
useful overview of the general program logic. They can also delineate major segments of a program, identify
certain key items within the program and provide other useful information about the program. Generally, the
comments need not be extensive; a few well-placed comments can shed a great deal of light on an otherwise
obscure program. Such comments can be of great use to the original programmer as well as to other persons
trying to read and understand a program, since most programmers do not remember the details of their own
programs over a period of time. This is especially true of programs that are long and complicated.

Another important characteristic of a well-written program is its ability to generate clear, legible output.
Two factors contribute to this legibility. The first is labeling of the output data, as we have discussed in Chap.
4. The second is the appearance of some of the input data along with the output, so that each instance of
program execution (if there are more than one) can be clearly identified. The manner in which this is
accomplished depends upon the environment in which the C program will be executed. In an interactive
environment the input data is displayed on the screen at the time of data entry, during program execution.
Hence the input data need not be displayed again.

When executing an interactive program, the user (someone other than the programmer) may not know
how to enter the required input data. For example, the user may not know what data items are required, when
the data items should be entered, or the order in which they should be entered. Thus a well-written interactive
program should generate prompts at appropriate times during the program execution in order to provide this
information.

EXAMPLE 5.2 Compound Interest Let us now consider an interactive C program corresponding to the outline
presented in Example 5.1,

104 PREPARING AND RUNNING A COMPLETE C PROGRAM [CHAP. 5

/* simple compound interest problem */

#include <stdio.h>
#include <math.h>

main()

{
float p, r, n, i, f;

/* read input data (including prompts) */

printf("Please enter a value for the principal (P): ");
scanf("%f", &p);

printf("Please enter a value Tor the interest rate (r): ");
scanf (“%f", &r);

printf(“Please enter a value for the number of years (n): ");
scanf("%f", &n);

/* calculate i, then f */

i
1

r/100;
P * pow((1 + 1),n);

/* display the output */

printf("\nThe final value (F) is: %.2f\n", T);
}

The program shown in this example is logically very straightforward. Thus we did not have to concern ourselves
with alternate ways to sequence the statements. There are, however, some other desirable features that might have been
included. For example, we might want to execute the program repetitively, for several different sets of input data. Or, we
might want to add error traps that prevent the user from entering negative values for any of the input parameters. In Chap.
6 we will see how these features can be added.

5.3 ENTERING THE PROGRAM INTO THE COMPUTER

Once the program has been written, it must be entered into the computer before it can be compiled and
executed. In older versions of C this was done by typing the program into a text file on a line-by-line basis,
using a text editor or a word processor.

Most contemporary versions of C or C++ include a screen editor that is used for this purpose. The editor
is usually integrated into the software environment. Thus, to access the editor, you must first enter the C or
C++ programming environment. The manner in which this accomplished varies from one implementation of
C to another.

Consider, for example, Version 4.5 Turbo C++, running under Windows on an IBM-compatible personal
computer. To enter Turbo C++, open the Turbo C++ group and then click on the Turbo C++ icon. This will
result in the near-empty window shown in Fig. 5.1. Within this window, the first line (containing Turbo C++
- [noname00.cpp)), is the title bar, and the second line (containing File Edit Search View, etc.) is the
menu bar. Selecting one of the items in the menu bar will cause a drop-down menu to appear, with a number
of choices related to the menu bar selection. For example, the File menu includes choices that allow you to
open a new program, retrieve an existing program, save a program, print a program listing, or exit from Turbo
C++. We will discuss some of these drop-down menu selections later in this chapter.

Usually a pointing device, such as a mouse, is used to select a menu item. This is accomplished by
moving the cursor over the desired item and then “clicking” on the item; i.e., pressing a button on the pointing
device.

The large clear space beneath the menu bar is an editing area where a new program can be entered or an
existing program displayed. Portions of the program listed in this area can be changed, deleted, copied or

CHAP. 5] PREPARING AND RUNNING A COMPLETE C PROGRAM 105

moved to another part of the program. Some of these changes are made directly in the editing area, while
others are made by highlighting (i.e., selecting) a part of the program and then copying, moving or deleting
the highlighted material using the selections provided in the Edit menu. Highlighting is usually carried out
by holding down a mouse button and then dragging the mouse across the material to be highlighted.

Scroll bars are present beneath and to the right of the editing area. The scroll bars allow you to move
quickly to other parts of the program if the program listing extends beyond the confines of the screen. Thus,
you can move vertically through the program listing by clicking along the right scroll bar, or by dragging the
small square scroll button up or down. Similarly, you can move horizontally across the program listing by
clicking along the bottom scroll bar, or by dragging the scroll button to the right or the left.

Finally, the last line is the status bar, which indicates the current status of the editing area, or the purpose
of the currently highlighted menu selection. Figure 5.1 indicates that the editing window is in the insert mode,
meaning that text can be inserted anywhere within the window.

= " Turbo O - [cAturbocinoname00.cpp] : |

|=; Flle Edl\ Search View Project Debug Tool Options Window Help -

A TRSIAHEIS . MAE T

Fig. 5.1

To enter a new program in Turbo C++, you simply type the program into the editing area on a line-by-line
basis and press the Enter key at the end of each line. To edit a line, use the mouse or the cursor movement
(arrow) keys to locate the beginning of the edit area. Then use the Backspace or Delete keys to remove
unwanted characters. You may also insert additional characters, as required.

You may delete one or more lines simply by highlighting the lines and then selecting Cut from the Edit
menu, or by pressing the Delete key. A block of lines can be moved to another location using the Cut and
Paste selections in the Edit menu. Similarly, a block of lines can be copied to another location using the
Copy and Paste selections in the Edit menu. Additional editing instructions are provided in the Turbo C++
User’s Manual.

Once the program has been entered, it should be saved before it is executed. In Turbo C++, this is
accomplished by selecting Save As from the File menu, and then supplying a program name, such as
INTEREST.C. (The extension C will be added automatically if an extension is not included as a part of the file

106 PREPARING AND RUNNING A COMPLETE C PROGRAM [CHAP. 5

name.) Once the program has been saved and a name has been provided, it can again be saved at some later
time (with, for example, any recent editing changes), simply by selecting Save from the File menu.

A program that has been saved can later be recalled by selecting Open from the File menu, and then
either typing the program name or selecting the program name from a list of stored programs. A printed
listing of the current program (called a “*hard copy™) can be obtained at any time by selecting Print from the
File menu.

EXAMPLE 5.3 Compound Interest Suppose you have entered the compound interest program shown in Example
5.2 into an IBM-compatible personal computer using Turbo C++. After all typing corrections have been made, the screen
will appear as shown in Fig. 5.2. You can then save the program by selecting Save As from the File menu, as shown in
Fig. 5.3.

Once you select Save As, a dialog box will appear, requesting the name of the program being saved. Respond by
entering the program name INTEREST.C. You may then conclude the session by selecting Exit from the File menu.

‘Mndow Help i I- _i
NIRRTy (=

ISR

/™ silplo conpound interest p:oblon ~/

#include <stdio.h>
#include <math.h>

main()

{
float p, r, n, i, £:

/* prompt for input data */

printf("Please enter a value for the principal (B): ™) ;

scanf ("¥£€", &p);

printf ("Please enter a value for the interest rate (xr): ") ;
scanf ("%f", &x):;

printf ("Please enter a value for the number of years (n): ");
scanf ("%£", &n);

/* calculate i, then £ */

i=1r / 100;
£f=p *pow((l+4i), n);

/* display the output */

printf ("\nThe final value (F) is: %.2f\n", £)

Fig. 5.2

5.4 COMPILING AND EXECUTING THE PROGRAM

Once the program has been entered into the computer, edited and saved, it can be compiled and executed
by selecting Run from the Debug menu. A new window will then be opened, and an attempt will be made to
compile the current program. If the program does not compile successfully, a list of error messages will
appear in a separate window. Each error message indicates the line number where the error was detected as
well as the type of error. If the program does compile successfully, however, it will immediately begin to
execute, prompting for input, displaying output, etc., within the new window.

EXAMPLE 5.4 Compound Interest Suppose you reenter Turbo C++ after concluding the session described in
Example 5.3. Start by loading the previous program, INTEREST.C, into the computer’s memory, by selecting Open from
the File menu. Then select Run from the Debug menu, as shown in Fig. 5.4,

CHAP. 5] PREPARING AND RUNNING A COMPLETE C PROGRAM 107

Print...
Printer setup...

U] Eat
1 citurbociroots.c
/% prompt for input data */

printf ("Please enter a value for the principal (P): ™);

scanf ("8£", &p)

printf ("Please enter a value for the interest rate (r): ");
scanf ("$£", &r);

printf("Please enter a value for the number of years (n): "):
scanf ("8£", &n);

/* calculate i, then £ */

i=x / 100;
£=p * pow((l + 1), n);

/* display the output */

printf ("\nThe final value (F) is: %.2f\n", £):

Fig. 5.3

IOOF .thtons j!lndow l:lelp S i_

step over
Trace into F7

Elle Ed‘t SGBI'Ch !ﬂew Erolect

Vi unplc cclpound i.nto:ut p:obl

#include <stdio.h>

#include ﬂlth.l.ﬁ' T:.g'g‘e.hrl}-.?i-n\-tll P
..mo Fause program

rminate program ClridF2
f Add watch... Clri+F5

float p, r, n, i, £; Add breakpoint...

/* prompt for input data */ Evaluate/Modify... Ciri+F7

printf("Please enter a value
scanf ("$£", &p); ad syimbol table..,
printf ("Please enter a value for tha :i.ntoust xate (x): ™) ;
scanf ("%f", &x);

printf("Please enter a value for the number of years (n): ™)’
scanf ("%£", &n)

/* calculate i, then £ */

i=1x / 100;
£f=p *pow((l + i), n);

/* display the output */
printf ("\nThe final value (F) is: %.2f\n", £);

108

PREPARING AND RUNNING A COMPLETE C PROGRAM

9 Turbo C++ - [citurboclinterest.c]

Elle Edﬂ §eamh !iew Bro]ect nebug Iool Options Window i

Vb si-ph cmmmd uttonlt p:oblu w/

#include <stdio.h>
#include <math.h>

imain() ; CATURBOC EREST.EXE

Please enter a value for the principal (P): 1008

{ Please enter a value for the interest rate (r): 6
float p, r, [Please enter a value for the number of years (n): 20
/* prompt fo
printf ("Ele
scanf ("R£",
printf ("Ple
scanf ("8£",
/* calculat]

i=x / 100;
£f=p*pow((l+4i), n);

/* display the output */

printf("\nThe final value (F) is: 2.2f\n",6 f£);

Turbo C++ - [chturboclinterest.c]

= File Ed!l §earch mew Broiecl nahug Iool Qpﬂons ![Idow Help

[=lEs

/* l.l-plc culpound !.nto:ut problem *l

#include <stdio.h>
#include <math.h>

main () : . - 2 CATLU FRES E)
Please enter a value for the principal (P): 1000
{ Please enter a value for the interest rate (r): 6
float p, x, Ipjease enter a value for the number of years (n): 20
/* prompt folrno final value (F) is: 3207.14

printf("Ple
scanf ("sf",
printf ("Ple
scanf ("ef£",

i=1x / 100;
f=p*pow((l+4i), n);

/* display the output */

printf("\nThe final value (F) is: %.2f\n",6 £);

Fig. 5.6

CHAP. 5] PREPARING AND RUNNING A COMPLETE C PROGRAM 109

The program is compiled successfully and immediately begins to execute. A new window, showing the input/output
dialog, appears on top of the original window containing the program listing. This is shown in Fig. 5.5 for the values P =
1000, » = 6 and n =20. These values have been entered by the user, in response to the input prompts.

Once the last input quantity has been entered (n = 20), the program resumes execution, resulting in the final output
shown in Fig. 5.6. Thus, we sce that a value of /= 3207.14 is obtained for the given input quantities.

5.5 ERROR DIAGNOSTICS

Programming errors often remain undetected until an attempt is made to compile or execute the program. The
presence of syntactic (or grammatical) errors will become readily apparent once the Run command has been
issued, since these errors will prevent the program from being compiled or executed successfully. Some
particularly common errors of this type are improperly declared variables, a reference to an undeclared
variable, incorrect punctuation, etc.

Most C compilers will generate diagnostic messages when syntactic errors have been detected during the
compilation process. These diagnostic messages are not always straightforward in their meaning and they
may not correctly identify where the error occurred (though they may attempt to do so). Nevertheless, they
are helpful in identifying the nature and the approximate location of the errors.

If a program includes several different syntactic errors, they may not all be detected on the first pass
through the compiler. Thus, it may be necessary to correct some syntactic errors before others can be found.
This process could repeat itself through several cycles before all of the syntactic errors have been identified
and corrected.

EXAMPLE 5.5 Syntactic Errors Here is another version of the compound interest program shown in Examples 5.2
through 5.4.

/* simple compound interest problem */

#include <stdio.h>
include <math.h>

main()

{
float p, r, n, i, T;
/* read input data (including prompts) */
printf(*Please enter a value for the principal (P): ");
scanf ("%f", &p);
printf("Please enter a value for the interest rate (r):);
scanf("%f", &ar);

printf("Please enter a value for the number of years (n): ");
scanf("%f", &n)

/* calculate i, then f */

i r/100;

P * pow(1 + i),n);

/* write output /*

printf(*\nThe final value (F) is: %.2f\n", f);

This version of the program contains five different syntactic errors. The errors are as follows:
1. The second include statement does not begin with a # sign.

2. The control string in the second printf statement does not have a closing quotation mark.

110 PREPARING AND RUNNING A COMPLETE C PROGRAM [CHAP. 5

The last scanf statement does not end with a semicolon.
4. The assignment statement for f contains unbalanced parentheses.
5. The last comment closes improperly (it ends with /* instead of */).

When a compilation was attempted (by selecting either Run from the Debug menu or Compile from the Project
menu), the error messages shown in Fig. 5.7 were obtained within a separate message window.

= Message

Compiling INTREST1.C:

Emor INTREST1.C 4: Declaration syntax eror

Emor INTREST1.C 15: Unterminated string or character constant

Emror INTREST1.C 30: Unexpected end of file in comment started on line 25

Fig. 5.7

The first message refers to the missing # sign in line 4 (the line numbers include empty lines). The second message refers
to the missing double quote () at the end of the second printf statement (line 15), and the third message refers to the
improper ending of the last comment (line 25). Notice that the error messages are somewhat cryptic. Thus, some
ingenuity may be required to determine what they mean.

When these three errors were correctly identified and corrected, another attempt was made to compile the program.
This resulted in the new set of error messages shown in Fig. 5.8.

=

Compiling INTREST1.C:

Ermror INTREST1.C 22: Statement missing : in function main

Error INTREST1.C 23: Too few parameters in call to ‘pow’ in function main
Warning INTREST1.C 23: Possible use of "i' before definition in function main
Warning INTREST1.C 23: Code has no effect in function main

Error INTREST1.C 23: Statement missing : in function main

Warning INTREST1.C 28: Function should return a value in function main

= Message v Ajl

Fig. 5.8

The first error message refers to the missing semicolon at the end of the last scanf statement (which actually occurs in line
18, not line 22). The second message refers to the missing left parenthesis in second assignment statement (line 23). The
following two warnings and the third error message are also a result of this one error.

When these remaining two errors were corrected, the program compiled correctly and began to execute, as shown in
Fig. 5.5.

You should understand that the specific error messages and warnings will vary from one version of C to another.
Some compilers may generate messages that are longer or more informative than those shown in this example, though the
messages shown here are typical.

Another type of error that is quite common is the execution error. Execution errors occur during program
execution, after a successful compilation. For example, some common execution errors are a numerical
overflow of underflow (exceeding the largest or smallest permissible number that can be stored in the
computer), division by zero, attempting to compute the logarithm or the square root of a negative number, etc.
Diagnostic messages will often be generated in situations of this type, making it easy to identify and correct
the errors. These diagnostics are sometimes called execution messages or run-time messages, to distinguish
them from the compilation messages described earlier.

CHAP. 5] PREPARING AND RUNNING A COMPLETE C PROGRAM 111

EXAMPLE 5.6 Real Roots of a Quadratic Equation Suppose we want to calculate the real roots of the quadratic
equation

a2 +px+c=0

using the quadratic formula

b Vb? - dac

2a

Here is a C program that will carry out these calculations.

/* real roots of a quadratic equation */

#include <stdio.h>
#include <math.h>

main()

{
float a, b, ¢, d, x1, x2;

/* read input data */

printf("a = ");
scanf("%f", &a);
printf("b = ");
scanf ("%f*, &b);
printf(*c = ");
scant ("%f", &c);

/* carry out the calculations */

d = sqrt(b *b - 4 *a * c);
x1 = (-b +d) / (2 *a);
x2 = (-b - d) / (2 * a);

/* display the output */

printf("\nx1 = %e x2 = %e*, x1, x2);

This program is completely free of syntactic errors, but it is unable to accommodate negative values for 52 — dac.
Furthermore, numerical difficulties may be encountered if the variable a has a very small or a very large numerical value,
orif a=0. A separate error message will be generated for each of these errors.

Suppose, for example, the program is run with Turbo C++ using the following input values:

a=1.0 b=2.0 c=3.0

The program compiles without any difficulty. When the object program is executed, however, the following error
message is generated, after the input values have been entered into the computer.

sqrt: DOMAIN error

Everything then comes to a halt, since the program execution cannot continue beyond this point. Figure 5.9 illustrates the
appearance of the screen in Turbo C++,

112 PREPARING AND RUNNING A COMPLETE C PROGRAM [CHAP. 5

— Turbo C++
File Edit Search View Project Debug Tool Options Window Help

I RIEREHEIE B M ETT

/* real roots of a quadratic equation */

#include <stdio.h> =l CATURBOCIROOTS.EXE
#include <math.h> = 1
2
main() E =3
= ROOTS.EXE

float a, b, c, d, x1, x2;
° sqrt: DOMAIN error

/* read input data */

printf("a = ") ;

scanf ("8£", &a);
printf(™ = ") ;
scanf ("%£", &b) ;
printf("c = ") ;
scanf ("8£", &c); « T

/* carry out the calculations */
d= sqrt(b *b - 4 * 3 * ¢);
x1=(-b+d / (2*a);

x2 = (-b - d) / (2 *a);

/* display the output */

printf ("\nxl = %e x2 = %e", x1, x2);

Fig. 5.9
Similarly, suppose the program is run with the input values
a=1E-30 b=1E10 c=1E36
The system now generates the error message
Floating Point: Overflow
when an attempt is made to execute the program. Figure 5.10 shows thc appearance of the screen in Turbo C++.
5.6 DEBUGGING TECHNIQUES

We now know that syntactic errors and execution errors usually produce error messages when compiling or
executing a program. Syntactic errors are relatively easy to find and correct, even if the resulting error
messages are unclear. Execution errors, on the other hand, can be much more froublesome. When an
execution error occurs, we must first determine its location (where it occurs) within the program. Once the
location of the execution error has been identified, the source of the error (why it occurs) must be determined.
Knowing where the error occurred often assists, however, in recognizing and correcting the error.

Closely related to execution errors are logical errors. Here the program executes correctly, carrying out
the programmer’s wishes, but the programmer has supplied the computer with instructions that are logically
incorrect. Logical errors can be very difficult to detect, since the output resulting from a logically incorrect
program may appear to be error-free. Moreover, logical errors are often hard to locate even when they are
known to exist (as, for example, when the computed results are obviously incorrect).

Fortunately, methods are available for finding the location of execution errors and logical errors within a
program. Such methods are generally referred to as debugging techniques. Some of the more commonly used
debugging techniques are described below.

CHAP. 5] PREPARING AND RUNNING A COMPLETE C PROGRAM 113

5 Turbo C++
| Eile Edit Search View Project Debug Tool Options Window Help
Sk e 1= TS SIAMGID 2.5 [=10

/* real roots of a quadratic equation */

#include <stdio.h> e=| CATURBOCIROOTS.EXE v[a |
#include <math.h> = 1e-30 £l
E = leld F,‘:

main() = 1e36 = ;:I
el

¢ =l ROOTS.EXE -

float a, b, ¢, d, x1, x2;

~fyanrcy

/* read input data */ o Floating Point: Overflow

printf("a = ") ;

scanf ("$£", sa);
printf("b = ") ;
scanf ("3£", &b);
printf("c = ") ;
scanf ("%£", &c);

[= 3F

/* carry out the calculations */

d=g3sqrt(b *b - 4 * 3 * ¢);
x1= (-b+4d) / (2*a);
x2= (b ~d) / (2 *a);
/* display the output */

printf ("\nxl = %e x2 = be", x1, x2);

Fig. 5.10
Error Isolation

Error isolation is useful for locating an error resulting in a diagnostic message. If the general location of the
error is not known, it can frequently be found by temporarily deleting a portion of the program and then
rerunning the program to see if the error disappears. The temporary deletion is accomplished by surrounding
the instructions with comment markers (/* and */), causing the enclosed instructions to become comments.
If the error message then disappears, the deleted portion of the program contains the source of the error.

A closely related technique is that of inserting several unique printf statements, such as

printf("Debugging - line 1\n");
printf("Debugging - line 2\n");
etc.

at various places within the program. When the program is executed, the debug messages will indicate the
approximate location of the error. Thus, the source of the error will lie somewhere between the last printf
statement whose message did appear, and the first printf statement whose message did not appear.

Tracing

Tracing involves the use of printf statements to display the values assigned to certain key variables, or to
display the values that are calculated internally at various locations within the program. This information
serves several purposes. For example, it verifies that the values actually assigned to certain variables really
are (or are not) the values that should be assigned to those values. It is not uncommon to find that the actual
assigned values are different than those expected. In addition, this information allows you to monitor the
progress of the computation as the program executes. In many situations, you will be able to identify a
particular place where things begin to go wrong because the values generated will be obviously incorrect.

114 PREPARING AND RUNNING A COMPLETE C PROGRAM [CHAP. 5

EXAMPLE 5.7 Debugging a Program Consider once again the program for calculating the real roots of a quadratic
equation, originally shown in Example 5.6. We saw that the program generates the execution error

Floating Point: Overflow

when it was executed with the input valuesa = 1E-30,b = 1E10and ¢ = 1E36. Let us now apply error isolation and
tracing techniques to determine the source of the error.

It is reasonable to assume that the error is generated in one of the three assignment statements following the last
scanf statement. Therefore, let us temporarily remove these three statements by placing exaggerated comment markers
around them, as shown in the following program listing.

/* real roots of a quadratic equation */

#include <stdio.h>
#include <math.h>

main()

{
float a, b, ¢, d, x1, x2;

/* read input data */

printf('a = “);
scanf ("%f", &a);
printf(*b = *);
scant ("%f", &b);
printf("c = ");
scanf("%f", &c);

/* carry out the calculations */

/"t't"'**t!'tttttttt*tttttttttttt error isolation oo o oy o o o ol O o o o o ke o o sl o o o o o A
d =sgrt(b *b - 4 *a *c);

x1 = (-b+d) / (2 * a);

x2 = (-b - d) / (2 * a);

(22 X222 S22 RS2 RRRRSSZ2S2 2222 RE 2R 21 end error 1S°lation tttﬁttttttttﬁtttﬁttttt’

/* display the output */

printf("\nx1 = %e X2 = %", x1, x2);

When the altered program was executed with the same three input values, the error message did not appear (though the
displayed values for x1 and x2 did not make any sense). Thus, it is clear that the source of the original error message lies

in one of these three statements.
We now remove the comment markers, but precede each assignment statement with a printf statement, as shown

below.

/* real roots of a quadratic equation */

#include <stdio.h>
#include <math.h>

main()

{
float a, b, ¢, d, x1, x2;

CHAP. 5] PREPARING AND RUNNING A COMPLETE C PROGRAM 115

/* read input data */

printf("a "),
scanf("%f", &a);
printf(*b = *);
scanf("%f", &b);
printf("c = ");
scanf ("%f", &c);

/* carry out the calculations */

printf(*"Debugging - Line 1\n"); /* temporary debugging statement */
d =sqrt(b *b - 4 *a *c);

printf("Debugging - Line 2\n"); /* temporary debugging statement */
x1 = (-b +d) / (2 * a);

printf(*Debugging - Line 3\n"); /* temporary debugging statement */

X2 = (-b - d} / (2 * a),
/* display the output */

printf(*\nx1 = %e x2 = %e", x1, x2);

When the program was executed, again using the same three input values, all three debug messages appeared,; i.e.,

Debugging - Line 1
Debugging - Line 2
Debugging - Line 3

Hence, we conclude that the overflow occurred in the last assignment statement, since this statement follows the third
printf statement.

We might normally conclude our debugging efforts at this point. To be complete, however, let us remove these three
debugging statements and replace them with three other printf statements (i.e., three tracing statements). The first
printf statement will display the values of a, b, ¢ and d, the second will display the value of (-b + d}, and the last will
display the value of (-b - d), as shown below. (Notice the placement of the three printf statements, together after the
calculation of d but before the calculation of x1 and x2. Also, notice the e-type formats in the printf statements.)

/* real roots of a quadratic equation */

#include <stdio.h>
#include <math.h>

main()

{
float a, b, ¢, d, x1, x2;
/* read input data */

printf(*a = ");
scanf(*%f", &a);
printf('b = *);
scanf ("%f", &b});
printf("c = ");
scanf("%f", &c);

/* carry out the calculations */

d =sqrt(b*b -4 *a*c);

116 PREPARING AND RUNNING A COMPLETE C PROGRAM [CHAP. 5

printf(*a = %e b=% c¢c=% d-="%\n", a, b, ¢, d); /* tracing statement */
printf("-b + d = %e\n*, (-b + d)); /* tracing statement */
printf("-b - d = %e\n*, (-b - d)); /* tracing statement */
x1 = (-b+d) / (2 *a),

x2 = (-b - d) / (2 * a);

/* display the output */

printf(“\nx1 = %e x2 = %e", x1, x2);

Execution of this program resulted in the following output:

a = 1.000000e-30 b = 1.000000e+10 ¢ = 1,000000e+36 d = 1.000000e+10
-b + d = 0.000000e+00
-b - d = -2.000000e+10

From these results we can now determine that the value of x2 should be
x2 = (-b - d) / (2 * a) = (-2.000000e+10) / (2 x 1.000000e-30) = -1.000000e+40

The resulting value, -1.000000e+40, exceeds (in magnitude) the largest floating-point number that can be stored within
the computer’s memory (see Sec. 2.4). Hence, the overflow.

Most contemporary C compilers include an interactive debugger, which provides the ability to set watch
values and breakpoints, and allows stepping through a program one instruction at a time. Watch values are
usually used with breakpoints or with stepping to provide detailed monitoring of the program as it executes.
The use of these features offers greater flexibility and convenience than the simple error isolation and tracing
techniques described previously. Each of these features is described in more detail below.

Watch Values

A watch value is the value of a variable or an expression which is displayed continuously as the program
executes. Thus, you can see the changes in a watch value as they occur, in response to the program logic. By
monitoring a few carefully selected watch values, you can often determine where the program begins to
generate incorrect or unexpected values.

In Turbo C++, watch values can be defined by selecting Add Watch from the Debug menu (see Fig. 5.4
earlier in this chapter), and then specifying one or more variables or expressions in the resulting dialog box.
The watch values will then be displayed within a separate window as the program executes.

Breakpoints

A breakpoint is a temporary stopping point within a program. Each breakpoint is associated with a particular
instruction within the program. When the program is executed, the program execution will temporarily stop at
the breakpoint, before the instruction is executed. The execution may then be resumed, until the next
breakpoint is encountered. Breakpoints are often used in conjunction with watch values, by observing the
current watch value at each breakpoint as the program executes.

To set a breakpoint in Turbo C++, select Add Breakpoint from the Debug menu (see Fig. 5.4), and then
provide the requested information in the resulting dialog box. Or, select a particular line within the program
and designate it a breakpoint by pressing function key £5. The breakpoint may later be disabled by again
pressing F5. (Function key F5 is called a “toggle” in this context, since it turns the breakpoint on or off by
successively pressing the key.)

CHAP. 5]} PREPARING AND RUNNING A COMPLETE C PROGRAM 117

Stepping

Stepping refers to the execution of one instruction at a time, typically by pressing a function key to execute
each instruction. In Turbo C++, for example, stepping can be carried out by pressing either function key F7 or
F8. (F8 steps over subordinate functions, whereas F7 steps through the functions.) By stepping through an
entire program, you can determine which instructions produce erroneous results or generate error messages.

Stepping is often used with watch values, allowing you to trace the entire history of a program as it
executes. Thus, you can observe changes to watch values as they happen. This allows you to determine
which instructions generate erroneous results.

EXAMPLE 5.8 Debugging with an Interactive Debugger Let us again consider the program given in Examples 5.6
and 5.7, for calculating the real roots of a quadratic equation. We will now use the interactive debugger in Turbo C++ to
determine the source of error when the program is executed with the input valuesa = 1E-30,b = 1E10and ¢ = 1E36,
as before.

Figure 5.11 shows the program within the Turbo C++ editing window. Three watch values have been selected for the
quantities —b+d, -b-d and 2*a. Each watch value was selected by choosing Add Watch from the Debug menu. The
watch values can be seen in the Watch window, which is superimposed over the program listing.

In addition, a breakpoint has been defined at the first assignment statement, i.e, d = sqrt{b*b - 4*a*c). The
breakpoint was defined by placing the cursor on the desired statement and then pressing function key FS5. The breakpoint
is shown highlighted in Fig. 5.11.

Note that Fig. 5.11 shows the status of the program before it has begun to execute. That is why the message <No
process running> appears after each watch value.

AN

Edt Search View Project Debug Tool Options Window Help T o S

citurboclroots.c

/* real roots of a quadratic equation */

#include <stdio.h>
#include <math.h>

main()

(
float a, b, c, d, x1, x2;

/* read input data */

printf(™a = ") ;
scanf ("R£", ga);
printf("b = ") ;
scanf ("8€", sb);
printf("c = ") ;
scanf ("%2", &c);

/* carry out the calculations */

X1 (b+d) /(2% a);
x2 = (b -d) / (2%a);

/* display the output */

printf{"\nxl = %e x2 = %e", x1, x2);

Fig. 5.11

Once the program execution begins (by selecting Run from the Debug menu), the values for a, b and ¢ are entered
from the keyboard and the execution continues as far as the break point. The program then temporarily stops, as shown in

118 PREPARING AND RUNNING A COMPLETE C PROGRAM [CHAP. 5

Fig. 5.12. Note that the first assignment statement has not yet been executed, so that d has not yet been assigned a value.
Hence, the first two watch values are undefined. However, the last watch value is obtained directly from the input data.
Its value is shown in the watch window in Fig. 5.12 as 2e-30.

| Turbo Ci+)
Ele Edit Search View Project Debug Tool Qptions Window Help
Gl TR S B
=) cMurboclroots.c EF::
/* rzeal roots of a quadratic equation */

#include <stdio.h>
#include <math.h>

main()
{ =] watch <]~
float a, b, ¢, d, x1, x2: 7 ‘-h-d:m - - e - 3

i

[

-h-d:aNA_H -
2%a:2e30 i
printf("a = ") T ki
scanf ("¥£", &a): % =y L]!
printf("b =) ; 7o
scanf ("RE", &b) =
printf("c = ") ;

scanf ("R£", &c):

/* read input data */

/* carry out the calculations */

d=sqrt(b *b -4 *a *c); i __‘-‘;‘,‘
x1=(-b+d) / (2 *a);

x2 = (-b ~-d) / (2 %a);

/* display the output */

printf("\nxl = %e x2 = %e", x1, x2):

[Pogamstopped BT e L TR

Fig. 5.12

We could resume the execution, continuing to the end of the program, by again selecting Run from the Debug menu.
Instead, however, let us step through the program by pressing function key F8 two times. Figure 5.13 shows the status of
the program at this point. Note that the breakpoint remains highlighted. In addition, the third assignment statement (i.e.,
x2 = (-b - d) / (2 * a))isalso highlighted. This last highlight indicates the next statement to be executed.

Within the watch window, we now sec the current values for all of the watch values. It is now easy to see that the
value to be assigned to x2, which is the quotient of the second watch value divided by the third watch value, will produce
an overflow. Indeed, if we resume the program execution, either by sclecting Run from the Debug menu or by stepping,
the overflow message shown in Fig. 5.10 will appear.

Sometimes an error simply cannot be located, despite the most elaborate debugging techniques. On such
occasions beginning programmers are often inclined to suspect a problem that is beyond their control, such as
a hardware error or an error in the compiler. However, the problem almost always turns out to be some subtle
error in the program logic. In such situations, you should resist the temptation to blame the computer and not
look further for that elusive programming error. Though computer errors do occur on rare occasions, they
usually produce very bizarre results, such as the computer “locking up” or displaying random, unintelligible
characters.

Finally, you should recognize that some logical errors are inescapable in computer programming, no
matter how carefully you may attempt to minimize their occurrence. You should therefore anticipate the need
for some logical debugging when writing realistic, meaningful C programs.

CHAP. 5] PREPARING AND RUNNING A COMPLETE C PROGRAM 119

5.1
5.2
5.3
5.4

55
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

5.17

File Edit Search Project g Tool Options Window Help :

{

cAturbociroots.c o[=]

/* real roots of a quadratic equation */ I

#include <stdio.h>
#include <math.h>

main()

float a, b, ¢, d, x1, x2;
/* read input data */

printf{("a = ") ;
scanf ("3£", &a)
printf("b = ") ;
scanf ("%£", &b);
printf("c = ") ;
scanf ("¥£", &)

/* carry out the calculations */

X1m (-b+d) / (2%a);

/* display the output */

printf("\nxl = %e x2 = ®e", x1, x2);

Fig. 5.13

Review Questions

What is meant by “top-down” programming? What are its advantages? How is it carried out?
What is pseudocode? What advantage is there in using pseudocode to plan a new program?
What is meant by “bottom-up” programming? How does it differ from top-down programming?

How much flexibility does the programmer have in the logical sequencing of the statements within a C program?
Explain.

Why are some statements indented within a C program? Is this indentation absolutely necessary?
What are the reasons for placing comments within a C program? How extensive should these comments be?
Name two factors that contribute to the generation of clear, legible output data.

What useful information is provided by prompts?

How is a program entered into the computer in most contemporary C programming environments?
What is a program name extension?

What is a syntactic error? Name some common syntactic errors.

What is an execution error? Name some common exccution errors.

How do syntactic errors and execution errors differ from one another?

What is a logical error? How do logical errors differ from syntactic and execution errors?

What are diagnostic messages?

What is the difference between compilation messages and execution messages? Name some situations in which
each type of diagnostic message would be generated.

What is error isolation? For what is it used? How is error isolation carried out?

120

5.18
5.19
5.20
5.21
522
5.23

PREPARING AND RUNNING A COMPLETE C PROGRAM [CHAP. 5

What is tracing? For what is it used? How is tracing carried out?

What is an interactive debugger? What special features are made available by a debugger?

What are watch values? For what are they used? In general terms, how are watch values defined?
What are breakpoints? For what are they used? In general terms, how are breakpoints defined?
What is stepping? For what is it used? In general terms, how is stepping carried out?

Describe how watch values can be used with breakpoints and stepping to monitor the progress of a program’s
execution.

Problems

The following questions are concerned with information gathering rather than actual problem solving.

5.24

5.25

5.26

5.27

5.28
5.29

530

For the personal computers at your school or office, obtain answers to the following questions.

(@) Exactly what equipment is available (printers, auxiliary memory devices, etc.)?

(b) What operating systems are available?

(¢} How can files (programs) be saved, displayed, and transferred from one memory device to another?

(d) What is the approximate cost of a complete personal computer system?

For the C compiler at your school or office, obtain answers to the following questions.

(@) What version of C is available? What operating system does it require?

(6) How is the C compiler accessed? Once the compiler is active, how is a C program accessed? How is the
program displayed? How is it saved?

(¢) How are normal editing functions (e.g., insert, delete, etc.) carried out?

(d) How is a C program compiled and executed?

(e) Does your compiler include an interactive debugger? If so, what features are supported by the debugger?
How are the more common features utilized?

(N What is the cost of the C compiler?

Programming Problems

Example 1.6 presents a C program for calculating the area of a circle, given its radius. Enter this program into your
computer and make any necessary modifications, such as #include <stdio.h>. Be sure to correct any typing
errors. List the program after it has been stored within the computer. When you are sure that it is correct, compile
the program and then execute the object program using several different values for the radius. Verify that the
computed answers are correct by comparing them with hand calculations.

Enter, compile and execute the C programs given in Examples 1.7 through 1.13. Verify that they run correctly
with your particular version of C. (If any of the programs do not run, try to determine why.)

Repeat Prob. 5.27 for a few of the programs given in Prob. 1.31.

Example 5.2 presents a C program for determining the future value of a savings account if the interest is allowed
to accumulate and compound annually. Enter this program into the computer and save it, then run the program
using several different sets of input data. Verify that the calculated results are correct by comparing them with
calculations carried out by hand, with the aid of a calculator.

Write a complete C program for each of the following problem situations. Enter each program into the computer,
being sure to correct any typing errors. When you are sure that it has been entered correctly, save the program,
then compile and execute. Be sure to include prompts for all input data, and label all output.

CHAP. 5]

(@)
(b

()

(@)

(e)

®)

Q)

()

)

PREPARING AND RUNNING A COMPLETE C PROGRAM 121

Print HELLO! at the beginning of a line.

Have the computer print
HI, WHAT'S YOUR NAME?

on one line. The user then enters his or her name immediately after the question mark. The computer then
skips two lines and prints

WELCOME (name)
LET'S BE FRIENDS!

on two consecutive lines. Use a character-type array to represent the user’s name. Assume the name
contains fewer than 20 characters.

Convert a temperature reading in degrees Fahrenheit to degrees Celsius, using the formula

C=(5/9) x (F-32)
Test the program with the following values: 68, 150, 212, 0, 22, —200 (degrees Fahrenheit).
Determine how much money (in dollars) is in a piggy bank that contains several half-dollars, quarters,
dimes, nickels and pennies. Use the following values to test your program: 11 half-dollars, 7 quarters, 3
dimes, 12 nickels and 17 pennies. (4nswer: $8.32).

Calculate the volume and area of a sphere using the formulas
V=dnr/3
A=4n2

Test the program using the following values for the radius: 1, 6, 12.2, 0.2.

Calculate the mass of air in an automobile tire, using the formula
PV =0.3Tm(T + 460)

where P = pressure, pounds per square inch (psi)

V = volume, cubic feet

m = mass of air, pounds

T = temperature, degrees Fahrenheit
The tire contains 2 cubic feet of air. Assume that the pressure is 32 psi at room temperature.
Read a five-letter word into the computer, then encode the word on a letter-by-letter basis by subtracting 30
from the numerical value that is used to represent each letter. Thus if the ASCII character set is being used,
the letter a (which is represented by the value 97) would become a C (represented by the value 67), etc.

Write out the encoded version of the word. Test the program with the following words: white, roses,

Japan, zebra.

Read into the computer a five-letter word that has been encoded using the scheme described above. Decode
the word by reversing the above procedure, then write out the decoded word.

Read an entire line of text into the computer, encoding it as it is read in, using the method described in part
(g). Display the entire line of text in encoded form. Then decode the text and write it out (displaying the
text as it originally appeared), using the method described in part (4).

Read into the computer a line of text containing both uppercase and lowercase letters. Write out the text
with the uppercase and lowercase letters reversed, but all other characters intact. (Hint: Use the conditional
operator ?: and the library functions islower, tolower and toupper.)

Chapter 6

Control Statements

In most of the C programs we have encountered so far, the instructions were executed in the same order in
which they appeared within the program. Each instruction was executed once and only once. Programs of
this type are unrealistically simple, since they do not include any logical control structures. Thus, these
programs did not include tests to determine if certain conditions are true or false, they did not require the
repeated execution of groups of statements, and they did not involve the execution of individual groups of
statements on a selective basis. Most C programs that are of practical interest make extensive use of features
such as these.

For example, a realistic C program may require that a logical test be carried out at some particular point
within the program. One of several possible actions will then be carried out, depending on the outcome of the
logical test. This is known as branching. There is also a special kind of branching, called selection, in which
one group of statements is selected from several available groups. In addition, the program may require that a
group of instructions be executed repeatedly, until some logical condition has been satisfied. This is known as
looping. Sometimes the required number of repetitions is known in advance; and sometimes the computation
continues indefinitely until the logical condition becomes true.

All of these operations can be carried out using the various control statements included in C. We will see
how this is accomplished in this chapter. The use of these statements will open the door to programming
problems that are much broader and more interesting than those considered earlier.

6.1 PRELIMINARIES

Before considering the detailed control statements available in C, let us review some concepts presented in
Chaps. 2 and 3 that must be used in conjunction with these statements. Understanding these concepts is
essential in order to proceed further.

First, we will need to form logical expressions that are either true or false. To do so, we can use the four
relational operators, <, <=, >, >= and the two equality operators, == and 1= (see Sec. 3.3).

EXAMPLE 6.1 Several logical expressions are shown below.
count <= 100
sqrt(a+b+c) > 0.005
answer == 0
balance >= cutoff
cht < 'T'
letter I= 'x'

The first four expressions involve numerical operands. Their meaning should be readily apparent.

In the fifth expression, ch1 is assumed to be a char-type variable. This expression will be true if the character
represented by ch1 comes before T in the character set, i.e., if the numerical value used to encode the character is less than
the numerical value used to encode the letter T.

The last expression makes use of the char-type variable letter. This expression will be true if the character
represented by letter is something other than x.

122

CHAP. 6] CONTROL STATEMENTS 123

In addition to the relational and equality operators, C contains two logical connectives (also called logical
operators), && (AND) and | | (OR), and the unary negation operator | (see Sec. 3.3). The logical connectives
are used to combine logical expressions, thus forming more complex expressions. The negation operator is
used to reverse the meaning of a logical expression (e.g., from true to false).

EXAMPLE 6.2 Here are some logical expressions that illustrate the use of the logical connectives and the negation
operator.

(count <= 100) && (cht I= '*')
(balance < 1000.0) || (status == 'R')
(answer < 0) || ((answer > 5.0) && (answer <= 10.0))
I((pay >= 1000.0) && (status == 's'))

Note that ch1 and status are assumed to be char-type variables in these examples. The remaining variables are assumed

to be numeric (either integer or floating-point).
Since the relational and equality operators have a higher precedence than the logical operators, some of the

parentheses are not needed in the above expressions (see Table 3-1 in Sec. 3.5). Thus, we could have written these
expressions as

count <= 100 && chi |= '*!
balance < 1000.0 || status == 'R’
answer < 0 || answer > 5.0 &% answer <= 10.0
! (pay >= 1000.0 && status == 's')
It is a good idea, however, to include pairs of parentheses if there is any doubt about the operator precedences. This is

particularly true of expressions that are relatively complicated, such as the third expression above.

The conditional operator ?: also makes use of an expression that is either true or false (see Sec. 3.5). An
appropriate value is selected, depending on the outcome of this logical expression. This operator is equivalent
to a simple if - else structure (see Sec. 6.6).

EXAMPLE 6.3 Suppose status is a char-type variable and balance is a floating-point variable. We wish to assign
the character C (current) to status if balance has a value of zero, and 0 (overdue) if balance has a value that is greater
than zero. This can be accomplished by writing

status = (balance == 0) ? 'C' : 'O

Finally, recall that there are three different kinds of statements in C: expression statements, compound
statements and control statements (see Sec. 2.8). An expression statement consists of an expression, followed
by a semicolon (see Sec. 2.7). A compound statement consists of a sequence of two or more consecutive
statements enclosed in braces ({ and }). The enclosed statements can be expression statements, other
compound statements or control statements. Most control statements contain expression statements or
compound statements, including embedded compound statements.

EXAMPLE 6.4 Here is an elementary compound statement which we have seen before, in Example 3.31.

int lower, upper;

lower = getchar();
upper = toupper(lower);
putchar(upper);

124 CONTROL STATEMENTS [CHAP. 6

Here is a more complicated compound statement

{
float sum = O, sumsq = 0, sumsqrt = 0, x;
scanf("%T", &x);
while (x = 0) {
sum += x;
sumsq += XxX*x;
sumsqrt += sqrt(x);
scanf (“%f", &x);
}
}

This last example contains one compound statement embedded within another.

The control statements presented within this chapter make extensive use of logical expressions and
compound statements. Assignment operators, such as the one used in the above example (i.e., +=), will also
be utilized.

6.2 BRANCHING: THE if - else STATEMENT

The if - else statement is used to carry out a logical test and then take one of two possible actions,
depending on the outcome of the test (i.e., whether the outcome is true or false).

The else portion of the if - else statement is optional. Thus, in its simplest general form, the statement
can be written as

if (expression) statement

The expression must be placed in parentheses, as shown. In this form, the statement will be executed
only if the expressionhas a nonzero value (i.e., if expressionis true). If the expression has a value of
zero (i.e., if expression is false), then the statement will be ignored.

The statement can be either simple or compound. In practice, it is often a compound statement which
may include other control statements.

EXAMPLE 6.5 Several representative if statements are shown below.
if (x < Q) printf("%f", x);

if (pastdue > 0)
credit = 0;

if (x <= 3.0) ¢
y =3 * pow(x, 2);
printf(*%f\n*, y);

if ((balance < 1000.) || (status == 'R'))
printf("%f", balance);

if ((a >= 0) && (b <= 5)) {
xmid = (a + b) [/ 2;
ymid sqrt(xmid);

CHAP. 6] CONTROL STATEMENTS 125

The first statement causes the value of the floating-point variable x to be printed (displayed) if its value is negative.
In the second statement, a value of zero is assigned to credit if the value of pastdue exceeds zero. The third statement
involves a compound statement, in which y is evaluated and then displayed if the value of x does not exceed 3. In the
fourth statement we sce a complex logical expression, which causes the value of balance to be displayed if its value is

less than 1000 or if status has been assigned the character 'R*.
The last statement involves both a complex logical expression and a compound statement. Thus, the variables xmid
and ymid will both be assigned appropriate values if the current value of a is nonnegative and the current value of b does

not exceed 5.
The general form of an if statement which includes the else clause is

if (expression) statement 1 else statement 2

If the expression has a nonzero value (i.e., if expression is true), then statement 7 will be executed.
Otherwise (i.e., if expressionis false), statement 2will be executed.

EXAMPLE 6.6 Here are several examples illustrating the full if - else statement.

if (status == 'S')
tax = 0.20 * pay;
else

tax = 0.14 * pay;

if (pastdue > 0) {
printf("account number %d is overdue", accountno);
credit = 0;

}
else

credit = 1000.0;
if (x <= 3)

y = 3 * pow(x, 2);
else

y =2 * pow(x - 3), 2);
printf(*%fi\n", balance);

if (circle) {
scanf("%f", &radius);
area = 3.14159 * radius * radius;
printf(*Area of circle = %f", area);

}
else {

scanf (“%f %f", &length, &width);

area = length * width;

printf(“‘Area of rectangle = %f*, area);
}

In the first example the value of tax is determined in one of two possible ways, depending on the character that has been
assigned to the variable status. Notice the semicolon at the end of each statement, particularly the first statement (tax =
0.2 * pay;). A more concise way to accomplish the same thing is to write

tax = (status == 'S') ? (0.20 * pay) : (0.14 * pay);

though this approach is not as clear.

126 CONTROL STATEMENTS [CHAP. 6

The second example examines the past-due status of an account. If the value of pastdue exceeds zero, a message is
displayed and the credit limit is set at zero; otherwise, the credit limit is set at 1000.0. In the third example, the value of y
is computed differently, depending on whether or not the corresponding value of x exceeds 3.

The fourth example shows how an area can be calculated for either of two different geometric figures. If circle is
assigned a nonzero value, the radius of a circle is read into the computer, the area is calculated and then displayed. If the
value of circle is zero, however, then the length and width of a rectangle are read into the computer, the area is
calculated and then displayed. In each case, the type of geometric figure is included in the label that accompanies the
value of the area.

It is possible to nest (i.e., embed) if - else statements, one within another. There are several different
forms that nested if - else statements can take. The most general form of two-layer nesting is

if e?7 if e2 s1
else s2
else 1if e3 s3
else s4

where e7, e2and e3 represent logical expressions and s7, s2, s3 and s4 represent statements. Now, one
complete if - else statement will be executed if e7 is nonzero (true), and another complete if - else
statement will be executed if e7 is zero (false). It is, of course, possible that s7, s2, s3 and s4 will contain
other if - else statements. We would then have multilayer nesting.

Some other forms of two-layer nesting are

if et st
else if e2 s2

if e7 st
else if e2 s2
else s3

if e7 if e2 st
else s2
else s3

if e7 if e2 st
else s2

In the first three cases the association between the else clauses and their corresponding expressions is
straightforward. In the last case, however, it is not clear which expression (e7 or £2) is associated with the
else clause. The answer is e2. The rule is that the else clause is always associated with the closest
preceding unmatched (i.e., else-less) if. This is suggested by the indentation, though the indentation itself is
not the deciding factor. Thus, the last example is equivalent to

if er {
if e2 s7 else s2
}

If we wanted to associate the else clause with e7 rather than e2, we could do so by writing

if er {
if e2 st
}

else s2

This type of nesting must be carried out carefully in order to avoid possible ambiguities.

CHAP. 6] CONTROL STATEMENTS 127

In some situations it may be desirable to nest multiple if - else statements, in order to create a situation
in which one of several different courses of action will be selected. For example, the general form of four
nested if - else statements could be written as

if et st
else if e2 s2
else if e3 s3
else if e4 s4
else s5

When a logical expression is encountered whose value is nonzero (true), the corresponding statement will be
executed and the remainder of the nested if - else statements will be bypassed. Thus, control will be

transferred out of the entire nest once a true condition is encountered.
The final else clause will apply if none of the expressions is true. It can be used to provide a default

condition or an error message.

EXAMPLE 6.7 Here is an illustration of three nested it - else statements.

if ((time >= 0.) && (time < 12.)) printf(*Good Morning");
else if ((time >= 12.) 8& (time < 18.)) printf("Good Afternoon");
else if ((time >= 18.) && (time < 24.)) printf("Good Evening");
else printf(°"Time is out of range");

This example causes a different message to be displayed at various times of the day. Specifically, the message Good
Morning will be displayed if time has a value between 0 and 12; Good Afternoon will be displayed if time has a value
between 12 and 18; and Good Evening will be displayed if time has a value between 18 and 24. An error message
(Time is out of range) will be displayed if the value of time is less than zero, or greater than or equal to 24.

6.3 LOOPING: THE while STATEMENT

The while statement is used to carry out looping operations, in which a group of statements is executed
repeatedly, until some condition has been satisfied.
The general form of the while statement is

while (expression) statement

The statement will be executed repeatedly, as long as the expression is true (i.e., as long expression
has a nonzero value). This statement can be simple or compound, though it is usually a compound
statement. It must include some feature that eventually alters the value of the expression, thus providing a
stopping condition for the loop.

EXAMPLE 6.8 Consecutive Integer Quantities = Suppose we want to display the consecutive digits 0, 1, 2, ..., 9,
with one digit on each line. This can be accomplished with the following program.

#include <stdio.h>

main() /* display the integers 0 through 9 */

int digit = 0;

while (digit <= 9) {
printf(*%d\n", digit);
++digit;

128 CONTROL STATEMENTS [CHAP. 6

Initially, digit is assigned a value of 0. The while loop then displays the current value of digit, increases its value by
I and then repeats the cycle, until the value of digit exceeds 9. The net effect is that the body of the loop will be
repeated 10 times, resulting in 10 consecutive lines of output. Each line will contain a successive integer value, beginning
with 0 and ending with 9. Thus, when the program is executed, the following output will be generated.

O O NOOU A WN = O

This program can be written more concisely as

#include <stdio.h>

main() {* display the integers O through 9 */
{
int digit = 0;
while (digit <= 9)
printf("sd\n”, digit++);
}

When executed, this program will generate the same output as the first program.

In some looping situations, the number of passes through the loop is known in advance. The previous
example illustrates this type of loop. Sometimes, however, the number of passes through the loop is not
known in advance. Rather, the looping action continues indefinitely, until the specified logical condition has
been satisfied. The while statement is particularly well suited for this second type of loop.

EXAMPLE 6.9 Lowercase to Uppercase Text Conversion In this example we will read a line of lowercase text
character-by-character and store the characters in a char-type array called letter. The program will continue reading
input characters until an end-of-line (EOF) character has been read. The characters will then be converted to uppercase,
using the library function toupper, and displayed.

Two separate while loops will be used. The first will read the text from the keyboard. Note that the number of
passes through this loop is not known in advance. The second while loop will perform the conversion and write out the
converted text. It will make a known number of passes, since the number of characters to be displayed will be determined
by counting the number of passes through the first loop.

The complete program is shown below.

/* convert a line of lowercase text to uppercase */

#include <stdio.nh>
#include <ctype.h>

#define EOL '\n’

main()

{
char letter([80];
int tag, count = 0;

CHAP. 6] CONTROL STATEMENTS 129

/* read in the lowercase text */
while ((letter{count] = getchar()) |= EOL) ++count;
tag = count;

/* display the uppercase text */

count = 0;

while (count < tag) {
putchar(toupper(letter[count]));
++count,;

}

Notice that count is initially assigned a value of zero. Its value increases by 1 during each pass through the first loop.
The final value of count, at the conclusion of the first loop, is then assigned to tag. The value of tag determines the
number of passes through the second loop.

The first while loop, i.c.,

while ((letter[count] = getchar()) != EOL) ++count;
is written very concisely. This single-statement loop is equivalent to the following:

letter[count] = getchar();

while (letter[count] != EOL) {
count = count + 1;
letter[count] = getchar();

}

This latter form will be more familiar to those readers experienced with other high-level programming languages, such as
Pascal or BASIC. Either form is correct, though the original form is more representative of typical C programming style.

When the program is executed, any line of text entered into the computer will be displayed in uppercase. Suppose,
for example, that the following line of text had been entered:

Fourscore and seven years ago our fathers brought forth .
The computer would respond by printing
FOURSCORE AND SEVEN YEARS AGO QUR FATHERS BROUGHT FORTH .

EXAMPLE 6.10 Averaging a List of Numbers Let us now use a while statement to calculate the average of a list of
n numbers. Our strategy will be based on the use of a partial sum that is initially set equal to zero, then updated as each
new number is read into the computer. Thus, the problem very naturally lends itself to the use of awhile loop.

The calculations will be carried out in the following manner.

Assign a value of 1 to the integer variable count. This variable will be used as a loop counter.
Assign a value of 0 to the floating-point variable sum.

Read in the value for the integer variable n.

v

Carry out the following steps repeatedly, as long as count does not exceed n.

(a) Read in one of the numbers in the list. Each number will be represented by the floating-point variable x.
(6) Add the value of x to the current value of sum.

(c) Increase the value of count by 1.

Divide the value of sum by n to obtain the desired average.

6. Write out the calculated value for the average.

Here is the actual C program. Notice that the input operations are all accompanied by prompts that ask the user for
the required information.

130 CONTROL STATEMENTS [CHAP. 6

/* calculate the average of n numbers */
#include <stdio.h>
main()

{
int n, count = 1;
float x, average, sum = O;

/* initialize and read in a value for n */
printf(“How many numbers? *};
scanf(“%d", &n);

/* read in the numbers */
while (count <= n) {
printf("x = *);
scanf("%f", &x);
sum += X;
++count;

}

/* calculate the average and display the answer */
average = sum/n;
printf("\nThe average is %f\n", average);

Notice that the while loop contains a compound statement which, among other things, causes the value of count to
increase. Eventually, this will cause the logical expression
count <= n
to become false, thus terminating the loop. Also, note that the loop will not be executed at all if n is assigned a value that
is less than 1 (which, of course, would make no sense).
Now suppose that the program will be used to process the following six values: 1, 2, 3, 4, 5, 6. Execution of the

program will produce the following interactive dialog. (Note that the user’s responses have been underlined.)

How many numbers? §

x X X X X X
non
o kn b kN =

The average is 3.500000

6.4 MORE LOOPING: THE do - while STATEMENT

When a loop is constructed using the while statement described in Sec. 6.3, the test for continuation of the

loop is carried out at the beginning of each pass. Sometimes, however, it is desirable to have a loop with the

test for continuation at the end of each pass. This can be accomplished by means of the do - while statement.
The general form of the do - while statement is

do statement while (expression);

CHAP. 6] CONTROL STATEMENTS 131

The statement will be executed repeatedly, as long as the value of expression is true (i.e., is nonzero).
Notice that statement will always be executed at least once, since the test for repetition does not occur until
the end of the first pass through the loop. The statement can be either simple or compound, though most
applications will require it to be a compound statement. It must include some feature that eventually alters the
value of expression so the looping action can terminate.

For many applications it is more natural to test for continuation of a loop at the beginning rather than at
the end of the loop. For this reason, the do - while statement is used less frequently than the while
statement described in Sec. 6.3. For illustrative purposes, however, the programming examples shown in Sec.
6.3 are repeated below using the do - while statement for the conditional loops.

EXAMPLE 6.11 Consecutive Integer Quantities In Example 6.8 we saw two complete C programs that use the
while statement to display the consecutive digits 0, 1, 2, . . ., 9. Here is another program to do the same thing, using the
do - while statement in place of the while statement.

#include <stdio.h>

main() /* display the integers O through 9 */

{
int digit = 0,
do
printf(*%sd\n", digit++);
while (digit <= 9);
}

As in the earlier example, digit is initially assigned a value of 0. The do - while loop displays the current value of
digit, increases its value by 1, and then tests to see if the current value of digit exceeds 9. If so, the loop terminates;
otherwise, the loop continues, using the new value of digit. Note that the test is carried out at the end of each pass
through the loop. The net effect is that the loop will be repeated 10 times, resulting in 10 successive lines of output. Each
line will appear exactly as shown in Example 6.8.

Comparing this program with the second program presented in Example 6.8, we see about the same level of
complexity in both programs. Neither of the conditional looping structures (i.e., while or do - while) appears more
desirable than the other.

EXAMPLE 6.12 Lowercase to Uppercase Text Conversion Now let us rewrite the program shown in Example 6.9,
which converts lowercase text to uppercase, so that the two while loops are replaced by do - while loops. As in the
carlier program, our overall strategy will be to read in a line of lowercase text on a character-by-character basis, store the
characters in a char-type array called letter, and then write them out in uppercase using the library function toupper.
We will make use of a do - while statement to read in the text on a character-by-character basis, and another do - while
statement to convert the characters to uppercase and then write them out.

Here is the complete C program.

/* convert a line of lowercase text to uppercase */

#include <stdio.h>
#include <ctype.h>

#define EOL .'\n’

main()
{
char letter[80];
int tag, count = -1;

/* read in the lowercase text */
do ++count; while ((letter[count] = getchar()) != EOL);
tag = count;

132 CONTROL STATEMENTS [CHAP. 6

/* display the uppercase text */

count = 0;

do {
putchar (toupper({letter[count]});
++count;

} while (count < tag);

}

We again see two different types of loops, even though they are both written as do - while loops. In particular, the
number of passes through the first loop will not be known in advance, but the second loop will execute a known number
of passes, as determined by the value assigned to tag.

Notice that the first loop, i.e.,

do ++count; while ((letter[count] = getchar()) != EOL);
is simple and concise, but the second loop,

do {
putchar (toupper(letter[count]}});
++count;

} while (count < tag);

is somewhat more complex. Both loops resemble the corresponding while loops presented in Example 6.9. Note,
however, that the first loop in the present program begins with a value of —I assigned to count, whereas the initial value
of count was 0 in Example 6.9.

When the program is executed, it behaves in exactly the same way as the program shown in Example 6.9.

Before leaving this example, we mention that the last loop could have been written more concisely as

do
putchar(toupper{letterfcount++]}});
while (count < tag);

This may appear a bit strange to beginners, though it is characteristic of the programming style that is commonly used by
experienced C programmers.

EXAMPLE 6.13 Averaging a List of Numbers The program shown in Example 6.10 can easily be rewritten to
illustrate the use of the do - while statement. The logic will be the same, except that the test to determine if all n numbers
have been entered into the computer will not be made until the end of the loop rather than the beginning. Thus the
program will always make at least one pass through the loop, even if n is assigned a value of 0 (which would make no
sense).

Here is the modified version of the program.

/* calculate the average of n numbers */
#include <stdio.h>

main()
{
int n, count = 1;
float x, average, sum = 0;

/* initialize and read in a value for n */
printf ("How many numbers? ");
scanf ("%d", &n);

CHAP. 6] CONTROL STATEMENTS 133

/* read in the numbers */
do {
printf(*x = ");
scanf ("%f", &x);
sum += X;
++count;
} while (count <= n);

/* calculate the average and display the answer */
average = sum/n;
printf("\nThe average is %f\n", average);

}

When the program is executed it will behave exactly the same way as the earlier version shown in Example 6.10.

6.5 STILL MORE LOOPING: THE for STATEMENT

The for statement is the third and perhaps the most commonly used looping statement in C. This statement
includes an expression that specifies an initial value for an index, another expression that determines whether
or not the loop is continued, and a third expression that allows the index to be modified at the end of each
pass.

The general form of the for statement is

for (expression 1; expression 2; expression 3) statement

where expression 7 is used to initialize some parameter (called an index) that controls the looping action,
expression 2represents a condition that must be true for the loop to continue execution, and expression
3 is used to alter the value of the parameter initially assigned by expression 1. Typically, expression 1
is an assignment expression, expression 2 is a logical expression and expression 3 is a unary
expression or an assignment expression.

When the for statement is executed, expression 2is evaluated and tested at the beginning of each pass
through the loop, and expression 3 is evaluated at the end of each pass. Thus, the for statement is
equivalent to

expression 1;

while (expression 2) ({
statement
expression 3;

The looping action will continue as long as the value of expression 2 is not zero, that is, as long as the
logical condition represented by expression 2is true.

The for statement, like the while and the do - while statements, can be used to carry out looping
actions where the number of passes through the loop is not known in advance. Because of the features that are
built into the for statement, however, it is particularly well suited for loops in which the number of passes is
known in advance. As a rough rule of thumb, while loops are generally used when the number of passes is
not known in advance, and for loops are generally used when the number of passes is known in advance.

EXAMPLE 6.14 Consecutive Integer Quantities We have already seen several different versions of a C program that
will display the consecutive digits 0, 1, 2, . . ., 9, with one digit on each line (see Examples 6.8 and 6.11). Here is another
program which does the same thing. Now, however, we will make use of the for statement rather than the while
statement or the do - while statement, as in the earlier examples.

134 CONTROL STATEMENTS [CHAP. 6

#include <stdio.h>
main() /* display the numbers 0 through 9 */

{
int digit;
for (digit = 0; digit <= 9; ++digit)
printf("%sd\n*, digit);

The first line of the for statement contains three expressions, enclosed in parentheses. The first expression assigns
an initial value 0 to the integer variable digit; the second expression continues the looping action as long as the current
value of digit does not exceed 9 at the beginning of each pass; and the third expression increases the value of digit by
1 at the end of each pass through the loop. The printf function, which is included in the for loop, produces the desired
output, as shown in Example 6.8.

From a syntactic standpoint all three expressions need not be included in the for statement, though the
semicolons must be present. However, the consequences of an omission should be clearly understood. The
first and third expressions may be omitted if other means are provided for initializing the index and/or altering
the index. If the second expression is omitted, however, it will be assumed to have a permanent value of 1
(true); thus, the loop will continue indefinitely unless it is terminated by some other means, such as a break or
a return statement (see Secs. 6.8 and 7.2). As a practical matter, most for loops include all three
expressions.

EXAMPLE 6.15 Consecutive Integer Quantities Revisited Here is still another example of a C program that
generates the consecutive integers 0, 1, 2, . . ., 9, with one digit on each line. We now use a for statement in which two
of the three expressions are omitted.

#include <stdio.h>

main() /* display the numbers 0 through 9 */

{
int digit = 0;
for (; digit <= 9;)
printf("%d\n", digit++);
}

This version of the program is more obscure than that shown in Example 6.14, and hence less desirable.
Note the similarity between this program and the second program in Example 6.8, which makes use of a while loop.

EXAMPLE 6.16 Lowercase to Uppercase Text Conversion Here once again is a C program that converts lowercase
text to uppercase. We have already seen other programs that do this, in Examples 6.9 and 6.12. Now, however, we make
use of a for loop rather than a while loop or a do - while loop.

As before, our overall strategy will be to read in a line of lowercase text on a character-by-character basis, store the
characters in a char-type array called letter, and then write them out in uppercase using the library function toupper.
Two separate loops will be required: one to read and store the lowercase characters, the other to display the characters in
uppercase. Note that we will now use a for statement to build a loop in which the number of passes is not known in
advance.

Here is the complete C program.

CHAP. 6] CONTROL STATEMENTS 135

/* convert a line of lowercase text to uppercase */

#include <stdio.h>
#include <ctype.h>

#define EOL '\n'
main()

{
char letter{80];

int tag, count;

/* read in the lowercase text */

Tor (count = 0; (letter[count] = getchar()) != EOL; ++count)

H

tag = count;

/* display the uppercase text */

for (count = 0; count < tag; ++count)
putchar(toupper(letter[count]));

}

Comparing this program with the corresponding programs given in Examples 6.9 and 6.12, we see that the loops can

be written more concisely using the for statement than with while or do - while statements.

EXAMPLE 6.17 Averaging a List of Numbers Now let us modify the program given in Example 6.10, which
calculates the average of a list of n numbers, so that the looping action is accomplished by means of a for statement. The
logic will be essentially the same, though some of the steps will be carried out in a slightly different order. In particular:

1.
2.

Assign a value of 0 to the floating-point variable sum.

Read in a value for the integer variable n.

Assign a value of 1 to the integer variable count, where count is an index that counts the number of passes through
the loop.

Carry out the following steps repeatedly, as long as the value of count does not exceed n.

(a) Read in one of the numbers in the list. Each number will be represented by the floating-point variable x.

(b) Add the value of x to the current value of sum.

(c) Increase the value of count by 1.

Divide the value of sum by n to obtain the desired average.

Write out the calculated value for the average.

Here is the complete C program. Notice that steps 3 and 4 are combined in the for statement, and that steps 3 and

4(c) are both carried out in the first line (first and third expressions, respectively). Also, notice that the input operations
are all accompanied by prompts that ask the user for the desired information.

/* calculate the average of n numbers */
#include <stdio.h>
main()

{

int n, count;
float x, average, sum = 0;

/* initialize and read in a value for n */
printf(“How many numbers? ");
scanf("%d", &n);

136 CONTROL STATEMENTS [CHAP. 6

/* read in the numbers */

for (count = 1; count <= n; ++count) {
printf(*x = ");
scanf ("%f", &x);
sum += x;

}

/* calculate the average and display the answer */
average = sum/n;
printf(*\nThe average is %f\n", average);

Comparing this program to the corresponding programs shown in Examples 6.10 and 6.13, we again see a more
concise loop specification when the for statement is used rather than while or do - while. Now, however, the for
statement is somewhat more complex than in the preceding programming examples. In particular, notice that the
statement part of the loop is now a compound statement. Moreover, we must assign an initial value to sum explicitly,
before entering the for loop.

When the program is executed it will behave exactly as the earlier versions, presented in Examples 6.10 and 6.13.

6.6 NESTED CONTROL STRUCTURES

Loops, like if - else statements, can be nested, one within another. The inner and outer loops need not be
generated by the same type of control structure. It is essential, however, that one loop be completely
embedded within the other — there can be no overlap. Each loop must be controlled by a different index.

Moreover, nested control structures can involve both loops and if - else statements. Thus, a loop can
be nested within an if - else statement, and an if - else statement can be nested within a loop. The nested
structures may be as complex as necessary, as determined by the program logic.

EXAMPLE 6.18 Repeated Averaging of a List of Numbers Suppose we want to calculate the average of several
consecutive lists of numbers. If we know in advance how many lists are to be averaged, then we can use a for statement
to control the number of times that the inner (averaging) loop is executed. The actual averaging can be accomplished
using any of the three methods presented earlier, in Examples 6.10, 6.13 and 6.17 (using awhile, a do - while, or a for
loop).

Let us arbitrarily use the for statement to carry out the averaging, as in Example 6.17. Thus, we will proceed in the
following manner.

1. Read in a value of 1loops, an integer quantity that indicates the number of lists that will be averaged.

2. Repeatedly read in a list of numbers and determine its average. That is, calculate the average of a list of numbers for
each successive value of loopcount ranging from | to loops. Follow the steps given in Example 6.14 to calculate
each average.

Here is the actual C program.

/* calculate averages for several different lists of numbers */
#include <stdio.h>

main()

{
int n, count, loops, loopcount;
float x, average, sum;

/* read in the number of lists */
printf(“How many lists? ");
scanf("%d", &loops);

CHAP. 6] CONTROL STATEMENTS 137

/* outer loop (process each list of numbers */
for (loopcount = 1; loopcount <= loops; ++loopcount) {

/* initialize and read in a value for n */

sum = 0;

printf(*\nList number %d\nHow many numbers? ", loopcount);
scanf("%d", &n);

/* read in the numbers */

for (count = 1; count <= n; ++count) {
printf("x = *);
scanf (*%f", &x);
sum += Xx;

} /* end inner loop */

/* calculate the average and display the answer */
average = sum/n;
printf("\nThe average is %f\n", average);

} /* end outer loop */

This program contains several interesting features. First, it contains two for statements, one embedded within the
other. Each for statement includes a compound statement, consisting of several individual statements enclosed in braces.
Also, a different index is used in each for statement (the indices are 1oopcount and count, respectively).

Note that sum must now be initialized within the outer loop, rather than within the declaration. This allows sum to be
reset to zero each time a new set of data is encountered (i.e., at the beginning of each pass through the outer loop).

The input data operations are all accompanied by prompts, indicating to the user what data are required. Thus, we see
pairs of printf and scanf functions at several places throughout the program. Two of the printf functions contain
multiple newline characters, to control the line spacing of the output. This causes the output associated with each set of
data (each pass through the outer loop) to be easily identified.

Finally, note that the program is organized into separate identifiable segments, with each segment preceded by a
blank space and a comment.

When the program is executed using three simple sets of data, the following dialog is generated. As usual, the user’s
responses to the input prompts have been underlined.

How many lists? 3

List number 1

How many numbers? 4
= 1.5

= 2.5

= 6.2

= 3.0

»x x x X
|

The average is 3.300000

List number 2
How many numbers? 3

X = 4
X = -2
x =7

The average is 3.000000

138 CONTROL STATEMENTS [CHAP. 6

List number 3

How many numbers? 5
= 5.4

= 8.0

2.2

= 1.7

= -3.9

x X X X X
n

The average is 2.680000

EXAMPLE 6.19 Converting Several Lines of Text to Uppercase This example illustrates the use of two different
types of loops, one nested within the other. Let us extend the lowercase to uppercase conversion programs presented in
Examples 6.9, 6.12 and 6.16 so that multiple lines of lowercase text can be converted to uppercase, with the conversion
taking place one line at a time. In other words, we will read in a line of lowercase text, display it in uppercase, then
process another line, and so on. The procedure will continue until a line is detected in which the first character is an
asterisk.

We will use nested loops to carry out the computation. The outer loop will be used to process multiple lines of text.
Two separate inner loops will be embedded within the outer loop. The first will read in a line of text, and the second will
display the converted uppercase text. Note that these inner loops are not nested. Let us arbitrarily utilize a while
statement for the outer loop, and a for statement for each of the inner loops.

In general terms, the computation will proceed as follows.

1. Assign an initial value of 1 to the outer loop index (1inecount).

2. Carry out the following steps repeatedly, for each successive line of text, as long as the first character in the line is
not an asterisk.

(a) Read in a line of text and assign the individual characters to the elements of the char-type array letter. A line
will be defined as a succession of characters that is terminated by an end-of-line (newline) designation.

(b) Assign the character count (including the end-of-line character) to tag.

(¢) Display the line in uppercase, using the library function toupper to carry out the conversion. Then write out
two newline characters so that the next line of input will be separated from the current output by a blank line,
and increment the line counter (1inecount).

3. Once an asterisk has been detected as the first character of a new line, write out Good bye and terminate the
computation.

Here is the complete C program.

/* convert several lines of text to uppercase
continue the conversion until the first character in a line is an asterisk (*) */

#include <stdio.h>
#include <ctype.h>

#define EOL '\n'

main()

{
char letter(80]);
int tag, count;

while((letter(0] = getchar()) I= '*'} {
/* read in a line of text */

for (count = 1; (letter[count] = getchar()) != EOL; ++count)

?
tag = count;

CHAP. 6] CONTROL STATEMENTS 139

/* display the line of text */
for (count = 0O; count < tag; ++count)
putchar (toupper(letter[count]));
printf(*\n\n");
} /* end outer loop */

printf(*"Good bye*);

A typical interactive session, illustrating the execution of the program, is shown below. Note that the input text
supplied by the user is underlined, as usual.

NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID .

Fourscore and seven years ago our fathers brought forth . . .
FOURSCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH .

Good bye

It should be understood that the decision to use a while statement for the outer loop and for statements for the inner
loops is arbitrary. Other loop structures could also have been selected.

Many programs involve both looping and branching. The various control structures are often nested, one
within another, as illustrated in the following three examples.

EXAMPLE 6.20 Encoding a String of Characters Let us write a simple C program that will read in a sequence of
ASCII characters and write out a sequence of encoded characters in its place. If a character is a letter or a digit, we will
replace it with the next character in the character set, except that Z will be replaced by A, z by a, and 9 by 0. Thus 1
becomes 2, C becomes D, p becomes q, and so on. Any character other than a letter or a digit will be replaced by a period
().

The computation will begin by reading in the characters. The scanf function will be used for this purpose. All the
characters, up to but not including the newline (\n) character that is used to terminate the input, will be entered and stored
in an 80-element, character-type array called 1ine.

The characters will then be encoded and displayed individually within a for loop. The loop will process each of the
characters in line, until the escape character \0, which designates the end of the character sequence, is encountered.
(Recall that the escape sequence \0 is automatically added at the end of each string.) Several nested if - else statements
will be included within the loop, to carry out the appropriate encoding. Each encoded character will then be displayed
using the putchar function.

The complete C program is shown below.

/* read in a string, then replace each character with an equivalent encoded character */
#include <stdio.h>
main()

{
char line[80];
int count;

/* read in the entire string */

printf("Enter a line of text below:\n");
scanf("%["\n]", line);

140 CONTROL STATEMENTS [CHAP. 6

/* encode each individual character and display it */

for (count = 0; line[count] I= '\0'; ++count) {
if (((line{count] >= '0') && (line{count] < '9'}) ||
((line[count] >= 'A') && (line[count] < 'Z')) ||
((line[count] >= 'a’') && (linefcount] < 'z')))
putchar(linefcount] + 1);

else if (line[count] == '9') putchar('0');
else if (line[count] == 'Z') putchar('A');
else if (line[count] == 'z') putchar('a‘');

else putchar('.');

Execution of this program generates the following representative dialog. The input provided by the user is again
underlined.

Enter a line of text below:

The White House, 1600 Pennsvlvanja Avepue, Washington, DG
Uif.Xijuf.Ipvtf..2711.Qfcotzmwbojb.Bwfovf..Xbtijohupo..ED

EXAMPLE 6.21 Repeated Compound Interest Calculations with Error Trapping In Example 5.2 we saw a
complete C program to carry out simple compound interest calculations, as outlined in Example 5.1. However, the
program in Example 5.2 did not allow for repetitive execution (i.e., for several successive calculations, using different
input data for each calculation), nor did it attempt to detect errors in the input data. Let us now add these features to the
earlier program.

In particular, let us embed the earlier calculations within a while statement, which will continue to execute as long as
the value entered for the principal (P) is positive. Thus, a zero value for P will be interpreted as a stopping condition. We
will include a message explaining the stopping condition when prompting for the value of P.

In addition, let us include an error trap that will test the value of each input quantity to determine if it is negative,
since a negative value would not make any sense and should be interpreted as an error. Each test will be carried out with a
separate if statement. If an error (i.e., a negative value) is detected, a message will be written asking the user to reenter
the data.

Here is the entire C program.

/* simple compound interest problem */

#include <stdio.h>
#include <math.h>

main()

{

float p,r,n,i,f;
/* read initial value for the principal */

printf("Please enter a value for the principal (P) ");
printf(*\n(To end program, enter 0 for the principal): *);
scanf("%f", &p);
if(p<0)

printf(*\nERROR - Please try again: ");

scanf ("%f", &p);

CHAP. 6] CONTROL STATEMENTS

while (p > 0) { /* main loop */
/* read remaining input data */

printf(*\nPlease enter a value for the interest rate (r): ");
scanf("%f", &r);
if (r < 0) {
printf (*\nERROR - Please try again: ");
scanf("%f", &r);
}
printf("\nPlease enter a value for the number of years (n): *);
scanf("%f", &n);
if (n < 0) {
printf("\nERROR - Please try again: ");
scanf("%f", &n),;
}

/* calculate i, then f */

r/100;
p * pow((1 + i), n);

h

/* display the output */
printf(*\nThe final value (F) is: %.2f\n*, f);
/* read principal for next pass */

printf("\n\nPlease enter a value for the principal (P) ");
printf("\n(To end program, enter 0 for the principal): ");
scanf ("%f", &p);
it (p<0) |

printf(“\nERROR - Please try again: *);

scanf("%f", &p);

}
} /* end while loop */

A typical interactive session is shown below. Note that the user’s responses are underlined.

Please enter a value for the principal (P)
(To end program, enter O for the principal): 1000

Please enter a value for the interest rate (r): 6
Please enter a value for the number of years (n): 2Q
The fipal value (F) is: 3207.14

Please enter a value for the principal (P)

(To end program, enter 0 for the principal): 5000
Please enter a value for the interest rate (r): -7.5

ERROR - Please try again: 7,5

141

142 CONTROL STATEMENTS [CHAP. 6

Please enter a value for the number of years (n): 12

The final value (F) is: 11908.90

Please enter a value for the principal (P)
(To end program, enter 0 for the principal): Q

Notice that two sets of input data are provided. The first set of data is entered correctly, resulting in a calculated future
value of 3207.14 (as in Example 5.4). In the second data set, a negative value is initially supplied for the interest rate (r).
This is detected as an error, resulting in an error message and a request for another value. Once the corrected value is
supplied, the remaining program execution proceeds as expected.

After the second data set has been processed, the user enters a value of 0 for the principal, in response to the prompt.
This causes the execution of the program to terminate.

Remember that the error trapping used in this program applies only to negative floating-point quantities entered as
input data. Another type of error occurs if a letter or punctuation mark is entered for one of the required input quantities.
This will produce a type mismatch in the scanf function, resulting in an input error. Individual compilers deal with this
type of error differently, thus preventing a simple, general error trap.

The following program is more comprehensive in nature. It includes most of the programming features
that we have encountered earlier in this book.

EXAMPLE 6.22 Solution of an Algebraic Equation For the more mathematically inclined reader, this example
illustrates how computers can be used to solve algebraic equations, including those that cannot be solved by more direct
methods. Consider, for example, the equation

3 +3x2-10=0.

This equation cannot be rearranged to yield an exact solution for x. However, we can determine the solution by a repeated
trial-and-error procedure (called an iterative procedure) that successively refines an initial guess.
We begin by rearranging the equation into the form

x=(10-3xH)13

Our procedure will then be to guess a value for x, substitute this value into the right-hand side of the rearranged equation,
and thus calculate a new value for x. If this new value is equal (or very nearly equal) to the old value, then we will have
obtained a solution to the equation. Otherwise, this new value will be substituted into the right-hand side and still another
value obtained for x, and so on. This procedure will continue until either the successive values of x have become
sufficiently close (i.e., until the computation has converged), or until a specified number of iterations has been exceeded.
This last condition prevents the computation from continuing indefinitely in the event that the computed results do not
converge.

To sec how the method works, suppose we choose an initial value of x = 1.0. Substituting this value into the right-
hand side of the equation, we obtain

x=[10-3(1.0)2]92 = 1.47577
We then substitute this new value of x into the equation, resulting in
x=[10 - 3(1.475772)02 = 1 28225
Continuing this procedure, we obtain
x=[10 - 3(1.28225)%)9-2 = 1.38344
x=[10 - 3(1.38344)2]02 = 1 33613

and so on. Notice that the successive values of x appear to be converging to some final answer.

CHAP. 6)

CONTROL STATEMENTS 143

The success of the method depends on the value chosen for the initial guess. If this value is too large in magnitude,
then the quantity in brackets will be negative, and a negative value cannot be raised to a fractional power. Therefore we
should test for a negative value of 10 - 3x2 whenever we substitute a new value of x into the right-hand side.

In order to write a program outline, let us define the following symbols.

count = an iteration counter (count will increase by 1 at each successive iteration)

the value of x substituted into the right-hand side of the equation

guess

root = the newly calculated value of x

test = the quantity (10 - 3x2)
error = the absolute difference between root and guess
flag = an integer variable that signifies whether or not to continue the iteration

We will continue the computation until one of the following conditions is satisfied.

1.
2.
3.

The value of error becomes less than 0.00001, in which case we have obtained a satisfactory solution.
Fifty iterations have been completed (i.e., count = 50).

The variable test takes on a negative value, in which case the computation cannot be continued.

Let us monitor the progress of the computation by writing out each successive value of root.

We can now write the following program outline.

1
2
3.
4

For convenience, define the symbolic constants TRUE and FALSE.

Declare all variables, and initialize the integer variables flag and count (assign TRUE to flag and 0 to count).

Read in a value for the initial guess.

Carry out the following looping procedure, while flag remains TRUE.

(a) Increase the value of count by I.

(b) Assign FALSE to flag if the new value of count equals 50. This will signify the last pass through the
loop.

(¢) Examine the value of test. If its value is positive, proceed as follows.
() Calculate a new value for root; then write out the current value for count, followed by the current

value for root.

(i) Evaluate error, which is the absolute value of the difference between root and guess. If this value
is greater than 0.00001, assign the current value of root to guess and proceed with another
iteration. Otherwise write out the current values of root and count, and set flag to FALSE. The
current value of root will be considered to be the desired solution.

(d) If the current value of test is not positive, then the computation cannot proceed. Hence, write an
appropriate error message (e.g., Numbers out of range) and set flag to FALSE.

Upon completion of step 4, write an appropriate error message (¢.g., Convergence not obtained) if count

has a value of 50 and the value of error is greater than 0.00001.

Now let us express the program outline in the form of pseudocode, in order to simplify the transition from a general
outline to a working C program.

#include files

#define symbolic constants

main()

{

/* variable declarations and initialization */

/* read input parameters */

144

CONTROL STATEMENTS

while (flag) ({
/* increment count */
/* flag becomes FALSE if count = 50 */
/* evaluate test */

it (test > 0) {
/* evaluate root */
/* display count and loop */
/* evaluate error */

if (error > 0.00001) guess = root;
else {
/* rlag becomes FALSE */
/* display the final answer (root and count) */

}
}
else ({

/* flag becomes FALSE */

/* numbers out of range - write error message */
}

} /* end while */

if ((count == 50) && (error > 0.00001))
/* convergence not obtained - write error message */

Here is the complete C program.

/* determine the roots of an algebraic equation using an iterative procedure */

#include <stdio.h>
#include <math.h>

#define TRUE 1
#define FALSE 0

main()

{

int flag = TRUE, count = O,
float guess, root, test, error;

/* read input parameters */

printf(*Initial guess: *);
scanf("%f", &guess);

while (flag) { /* begin the main loop */

++count;
if (count == 50) flag = FALSE;
test = 10, - 3. * guess * guess,

if (test > 0) { /* another iteration */

root = pow(test, 0.2);
printf("\nlteration number: %2d", count);
printf (" x= %7.5f", root);

error = fabs(root - guess);

[CHAP. 6

CHAP. 6] CONTROL STATEMENTS 145

if (error > 0.00001) guess = root; /* repeat the calculation */
else { /* display the final answer */
flag = FALSE;
printf(*"\n\nRoot= %7.5f", root);
printf(* No. of iterations= %2d", count);
}
}
else { /* error message */
flag = FALSE;
printf("\nNumbers out of range - try another initial guess");
}
}
if ((count == 50) && (error > 0.00001)) /* another error message */

printf(*\n\nConvergence not obtained after 50 iterations");

}

Notice that the program contains a while statement and several if - else statements. A for statement could easily
have been used instead of the while statement. Also, notice the nested if - else statements near the middle of the
program.

The output that is generated for an initial guess of x = 1 is shown below, with the user’s responses underlined.
Notice that the computation has converged to the solution x = 1.35195 after 16 iterations. The printed output shows the
successive values of x becoming closer and closer, leading to the final solution.

Initial guess: 1

Iteration number: 1 x= 1.47577
Iteration number: 2 x= 1.28225
Iteration number: 3 x= 1.38344
Iteration number: 4 x= 1,33613
Iteration number: 5 x= 1.35951
Iteration number: 6 x= 1.34826
Iteration number: 7 x= 1.35375
Iteration number: 8 x= 1.35109
Iteration number: 9 x= 1.35238
Iteration number: 10 x= 1.35175
Iteration number: 11 x= 1.35206
Iteration number: 12 x= 1.35191
Iteration number: 13 x= 1.35198
Iteration number: 14 x= 1.35196
Iteration number: 15 x= 1.35196
Iteration number: 16 x= 1.35195

Root= 1.35195 No. of iterations= 16

Now suppose that a value of x = 10 had been selected as an initial guess. This value generates a negative number
for test in the first iteration. Therefore the output would appear as follows.

Initial guess: 10
Numbers out of range - try another initial guess

It is interesting to see what happens when the initial guess is once again chosen as x = 1, but the maximum number
of iterations is changed from 50 to 10. You are encouraged to try this and observe the result.

you should underdstand that there are many other iterative methods for solving algebraic equations. Most converge
faster than the method described above (i.e., they require fewer iterations to obtain a solution), though the mathematics is
more complicated.

146 CONTROL STATEMENTS [CHAP. 6

6.7 THE switch STATEMENT

The switch statement causes a particular group of statements to be chosen from several available groups.
The selection is based upon the current value of an expression which is included within the switch statement.
The general form of the switch statement is

switch (expression) statement

where expression results in an integer value. Note that expression may also be of type char, since
individual characters have equivalent integer values.

The embedded statement is generally a compound statement that specifies alternate courses of action.
Each alternative is expressed as a group of one or more individual statements within the overall embedded
statement.

For each alternative, the first statement within the group must be preceded by one or more case labels
(also called case prefixes). The case labels identify the different groups of statements (i.e., the different
alternatives) and distinguish then from one another. The case labels must therefore be unique within a given
switch statement.

In general terms, each group of statements is written as

case expression :
statement 1
statement 2

statement n
or, when multiple case labels are required,

case expression 1 :
case expression 2 :

case expression m :
statement 1
statement 2

statement n
where expression 1, expression 2, . . . , expression m represent constant, integer-valued
expressions. Usually, each of these expressions will be written as either an integer constant or a character
constant. Each individual statement following the case labels may be either simple or complex.
When the switch statement is executed, the expression is evaluated and control is transferred directly
to the group of statements whose case-label value matches the value of the expression. If none of the case-

label values matches the value of the expressZon, then none of the groups within the switch statement will
be selected. In this case control is transferred directly to the statement that follows the switch statement.

EXAMPLE 6.23 A simple switch statement is illustrated below. In this example, choice is assumed to be a char-type
variable.

switch (choice = getchar()) {

case 'r':

case 'R':
printf ("RED");
break;

CHAP. 6] CONTROL STATEMENTS 147

case 'w':
case 'W':
printf ("WHITE");
break;
case 'b':
case 'B':
printf ("BLUE");
}

Thus, RED will be displayed if choice represents either r or R, WHITE will be displayed if choice represents either w or W,
and BLUE will be displayed if choice represents either b or B. Nothing will be displayed if any other character has been

assigned to choice.
Notice that each group of statements has two case labels, to account for either upper or lowercase. Also, note that

each of the first two groups ends with the break statement (see Sec. 6.8). The break statement causes control to be
transferred out of the switch statement, thus preventing more than one group of statements from being executed.

One of the labeled groups of statements within the switch statement may be labeled default. This
group will be selected if none of the case labels matches the value of the expression. (This is a convenient
way to generate error messages or error correction routines.) The default group may appear anywhere
within the switch statement—it need not necessarily be placed at the end. If none of the case labels matches
the value of the expressionand the default group is not present (as in the above example), then no action
will be taken by the switch statement.

EXAMPLE 6.24 Here is a variation of the switch statement presented in Example 6.23.

switch (choice = toupper(getchar())) {

case 'R’':
printf(“RED");
break;

case 'W':
printf ("WHITE");
break;

case 'B':
printf ("BLUE");
break;

default:
printf("ERROR");

The switch statement now contains a default group (consisting of only one statement), which generates an error

message if none of the case labels matches the original expression.
Each of the first three groups of statements now has only one case label. Multiple case labels are not necessary in this
example, since the library function toupper causes all incoming characters to be converted to uppercase. Hence, choice

will always be assigned an uppercase character.

EXAMPLE 6.25 Here is another typical switch statement. In this example f1ag is assumed to be an integer variable,
and x and y are assumed to be floating-point variables.

148 CONTROL STATEMENTS [CHAP. 6

switch (flag) {

case -1:
y = abs(x);
break;
case 0:
y = sgrit(x);
break;
case 1:
y = X5
break;
case 2:
case 3:
y =2* (x-1);
break;
default:
y = 0;
}

In this example y will be assigned some value that is related to the value of x if flag equals -1, 0, 1, 2 or 3. The exact
relationship between y and x will depend upon the particular value of flag. If flag represents some other value,
however, then y will be assigned a value of 0.

Notice that the case labels are numeric in this example. Also, note that the third group of statements has two case
labels, whereas each of the other groups have only one case label. And finally, notice that a default group (consisting of
only one statement) is included within this switch statement.

In a practical sense, the switch statement may be thought of as an alternative to the use of nested if -
else statements, though it can only replace those if - else statements that test for equality. In such
situations, the use of the switch statement is generally much more convenient.

EXAMPLE 6.26 Calculating Depreciation Let us consider how to calculate the yearly depreciation for some
depreciable item, such as a building, a machine, etc. There are three commonly used methods for calculating depreciation,
known as the straight-line method, the double-declining-balance method, and the sum-of-the-years "-digits method. We
wish to write a C program that will allow us to select any one of these methods for each set of calculations.

The computation will begin by reading in the original (undepreciated) value of the item, the life of the item (i.e., the
number of years over which it wili be depreciated) and an integer that indicates which method will be used. The yearly
depreciation and the remaining (undepreciated) value of the item wil! then be calculated and written out for each year.

The straight-line method is the easiest to use. In this method the original value of the item is divided by its life (total
number of years). The resuiting quotient will be the amount by which the item depreciates each year. For example, if an
$8000 item is to be depreciated over 10 years, then the annual depreciation would be $8000/10 = $800. Therefore, the
value of the item would decrease by $800 each year. Notice that the annual depreciation is the same each year when using
straight-line depreciation.

When using the double-declining-balance method, the value of the item will decrease by a constant percentage each
year. Hence the actual amount of the depreciation, in dollars, will vary from one year to the next. To obtain the
depreciation factor, we divide 2 by the life of the item. The depreciation factor is multiplied by the value of the item art the
beginning of each year (not the original value of the item) to obtain the annual depreciation.

Suppose, for example, that we wish to depreciate an $8000 item over 10 years, using the double-declining-balance
method. The depreciation factor will be 2/10 = 0.20. Hence the depreciation for the first year will be 0.20 x $8000 =
$1600. The second year’s depreciation will be 0.20 x ($8000 — $1600) = 0.20 x $6400 = $1280; the third year’s
depreciation will be 0.20 x $5120 = $1024, and so on.

CHAP. 6] CONTROL STATEMENTS 149

In the sum-of-the-years -digits method the value of the item will decrease by a percentage that is different each year.
The depreciation factor will be a fraction whose denominator is the sum of the digits from 1 to n, where n represents the
life of the item. If, for example, we consider a 10-year lifetime, the denominator willbe 1 + 2+ 3 + - - -+ 10 =55. For
the first year the numerator will be », for the second year it will be (n — 1), for the third year (n — 2), and so on. The yearly
depreciation is obtained by multiplying the depreciation factor by the original value of the item.

To see how the sum-of-the-years’-digits method works, we again depreciate an $8000 item over 10 years. The
depreciation for the first year will be (10/55) x $8000 = $1454.55,; for the second year it will be (9/55) x $8000 =
$1309.09; and so on.

Now let us define the following symbols, so that we can write the actual program.

val the current value of the item

tag = the original value of the item (i.e., the original value of val)

deprec = the annual depreciation

n = the number of years over which the item will be depreciated

year = acounter ranging from 1ton
choice = an integer indicating which method to use
Our C program will follow the outline presented below.

1. Declare all variables, and initialize the integer variable choice to 0 (actually, we can assign any value other
than 4 to choice).

2. Repeat all of the following steps as long as the value of choice is not equal to 4.

(a) Read a value for choice which indicates the type of calculation to be carried out. This value can only be
1, 2,3 or4. (Any other value will be an error.)

(b) If choice is assigned a value of 1, 2 or 3, read values for val and n.

(¢) Depending on the value assigned to choice, branch to the appropriate part of the program and carry out
the indicated calculations. In particular,

({) Ifchoice is assigned a value of 1, 2 or 3, calculate the yearly depreciation and the new vaiue of the
item on a year-by-year basis, using the appropriate method indicated by the value of choice. Print
out the results as they are calculated, on a year-by-year basis.

(ity If choice is assigned a value of 4, write out a “goodbye” message and end the computation by
terminating the while loop.

(iify If choice is assigned any value other than 1, 2, 3 or 4, write out an error message and begin another
pass through the while loop.

Now let us express this outline in pseudocode.

#include files
main()

{

/* variable declarations and initialization */
while (choice = 4) {
/* generate menu and read choice */

if (choice >= 1 && choice <= 3)
/* read val and n */

switch (choice) {
case 1: /* straight-line method */

/* write out title */

150 CONTROL STATEMENTS [CHAP. 6

/* calculate depreciation */

/* for each year:
calculate a new value
write out year, depreciation, value */

case 2: /* double-declining-balance method */
/* write out title */

/* for each year:
calculate depreciation
calculate a new value
write out year, depreciation, value */

case 3: /* sum-of -the-years'-digits method */
/* write out title */
/* tag original value */

/* for each year:
calculate depreciation
calculate a new value
write out year, depreciation, value */

case 4: /* end of computation */
/* write "goodbye" message */
/* write out title */
default: /* generate error message */

/* write error message */

Most of the pseudocode is straightforward, though a few comments are in order. First, we see that a while statement
is used to repeat the entire set of calculations. Within this overall loop, the switch statement is used to select a particular
depreciation method. Each depreciation method uses a for statement to carry out the required calculations.

At this point it is not difficult to write a complete C program, as shown below.

/* calculate depreciation using one of three different methods */
#include <stdio.h>

main()

{
int n, year, choice = 0;
float val, tag, deprec;

while (choice l= 4) ({
/* read input data */

printf(*\nMethod: (1-SL 2-DDB 3-SYD 4-End) ");
scanf("%d", &choice),;
if (choice >= 1 && choice <= 3) {
printf(*Original value: *);
scanf("%f", &val);

CHAP. 6] CONTROL STATEMENTS 151

printf(“Number of years: *);
scanf("%d", &n);

}

switch (choice) {

case 1: /* straight-line method */

printf(*\nStraight-Line Method\n\n"});

deprec = val/n;

for (year = 1; year <= n; ++year) {
val -= deprec;
printf("End of Year %2d", year);
printf(" Depreciation: %7.2f", deprec);
printf(* Current value: %8.2f\n", val);

}
break;

case 2: /* double-declining-balance method */

printf("\nOouble-Declining-Balance Method\n\n");
for (year = 1; year <= n; ++year) {
deprec = 2*val/n;
val -= deprec;
printf("End of Year %2d", year);
printf (" Depreciation: %7.2f", deprec);
printf(" Current Value: %8.2f\n*, val);
}

break;
case 3: /* sum-of-the-years'-digits method */

printf(*\nSum-0f-The-Years\'-Digits Method\n\n");
tag = val;
for (year = 1; year <= n; ++year) {
deprec = (n-year+1)*tag / (n*(n+1)/2);
val -= deprec;
printf("End of Year %2d", year);
printf(" Depreciation: %7.2f", deprec);
printf(" Current Value: %8.2f\n", val);
}

break;

case 4: /* end of computation */

printf("\nGoodbye, have a nice dayl\n");
break;

default: /* generate error message */

printf(*\nlncorrect data entry - please try again\n");
} /* end switch */
} /* end while */
}

The calculation of the depreciation for the sum-of-the-years’-digits method may be somewhat obscure. In particular,
the term (n-year+1) in the numerator requires some explanation. This quantity is used to count backward (from n down
to 1) as year progresses forward (from 1 to n). These declining values are required by the sum-of-the-years’-digits
method. We could, of course, have set up a backward-counting loop instead, i.e.

152 CONTROL STATEMENTS [CHAP. 6

for {year = n; year >= 1; —-—year)

but then we would have required a corresponding forward-counting loop to write out the results of the calculations on a
yearly basis. Also, the term {n*(n+1)/2) which appears in the denominator is a formula for the sum of the first n digits;
ie,1 +2+ . . . +n

The program is designed to be run interactively, with prompts for the required input data. Notice that the program
generates a menu with four choices, to calculate the depreciation using one of the three methods or to end the computation.
The computer will continue to accept new sets of input data, and carry out the appropriate calculations for each data set,
until a value of 4 is selected from the menu. The program automatically generates an error message and returns to the
menu if some value other than 1, 2, 3 or 4 is entered in response to the menu request.

Some representative output is shown below. In each case, an $8000 item is depreciated over a 10-year period, using
one of the three methods. The error message that is generated by an incorrect data entry is also illustrated. Finally, the
computation is terminated in response to the last menu selection.

Method: (1-SL 2-DDB 3-SYD 4-End) 1
Original value: 8000
Number of years: 10

Straight-Line Method
End of Year

End of Year
End of Year

1 Depreciation: 800.00 Current Value: 7200.00
2 Depreciation: 800.00 Current Value: 6400.00
3 Depreciation: 800.00 Current Value: 5600.00
End of Year 4 Depreciation: 800.00 Current Value: 4800.00
End of Year 5 Depreciation: 800.00 Current Value: 4000.00
End of Year 6 Depreciation: 800.00 Current Value: 3200.00
End of Year 7 Depreciation: 800.00 Current Value: 2400.00
End of Year 8 Depreciation: 800.00 Current Value: 1600.00
End of Year 9 Depreciation: 800.00 Current Value: 800.00
End of Year 10 Depreciation: 800.00 Current Value: 0.00

Method: (1-SL 2-DDB 3-SYD 4-End) 2
Original value: 8000

Number of years: 10

Double-Declining-Balance Method

End of Year 1 Depreciation:1600.00 Current value: 6400.00
End of Year 2 Depreciation:1280.00 Current Value: 5120.00
End of Year 3 Depreciation:1024.00 Current Value: 4096.00
End of Year 4 Depreciation: 819.20 Current Value: 3276.80
End of Year 5 Depreciation: 655.36 Current Value: 2621.44
End of Year 6 Depreciation: 524.29 Current Value: 2097.15
End of Year 7 Depreciation: 419.43 Current Value: 1677.72
End of Year 8 Depreciation: 335.54 Current Value: 1342.18
End of Year 9 Depreciation: 268.44 Current Value: 1073.74
0

End of Year 1 Depreciation: 214.75 Current Value: 858.99

Method: (1-SL 2-DDB 3-SYD 4-End) 3
Original value: 8000
Number of years: 10

Sum-of-the-Years'-Digits Method

CHAP. 6

End
End
End
End
End
End
End
End
End
End

Method:

of
of
of
of
of
of
of
of
of
of

(1-sL

Incorrect data

Method:

(1-SL 2-DDB 3-SYD 4-End) 4

CONTROL STATEMENTS

Depreciation:1454.
Depreciation:1309.
Depreciation:1163.
Depreciation:1018.
Depreciation: 872.
Depreciation: 727.
.82

Depreciation: 581

Depreciation: 436.
Depreciation: 290.
Depreciation: 145.

Goodbye, have a nice dayl

55
09
64
18
73
27

36
91
45

2-DDB 3-SYD 4-End) 5

Current
Current
Current
Current
Current
Current
Current
Current
Current
Current

entry - please try again

Value:
Value:
value:
value:
Value:
Value:
Value:
Value:
Value:
Value:

6545.
5236.
4072.
3054.
.82

2181

1454,
872.
436.

.45

.00

145

45
36
73
55

55
73
36

153

Notice that the double-declining-balance method and the sum-of-the-years’-digits method result in a large annual
depreciation during the early years, but a very small annual depreciation in the last few years of the item’s lifetime. Also,
we see that the item has a value of zero at the end of its lifetime when using the straight-line method and the sum-of-the-

years’-digits method, but a small value remains undepreciated when using the double-declining-balance method.

6.8 THE break STATEMENT

The break statement is used to terminate loops or to exit from a switch. It can be used within a for, while,
do -while, or switch statement.
The break statement is written simply as

break;

without any embedded expressions or statements.

We have already seen several examples of the use of the break statement within a switch statement, in
Sec. 6.7. The break statement causes a transfer of control out of the entire switch statement, to the first
statement following the switch statement.

EXAMPLE 6.27 Consider once again the switch statement originally presented in Example 6.24.

switch (choice

case

case

case

‘R
printf(*RED");
break;

|wt :
printf (“WHITE");
break;

B':
printf(*BLUE"};
break;

default:
printf (“ERROR");
break;

toupper(getchar()))

{

154 CONTROL STATEMENTS [CHAP. 6

Notice that each group of statements ends with a break statement, in order to transfer control out of the switch
statement. The break statement is required within each of the first three groups, in order to prevent the succeeding groups
of statements from executing. The last group does not require a break statement, since contro! will automatically be
transferred out of the switch statement after the last group has been executed. This last break statement is included,
however, as a matter of good programming practice, so that it will be present if another group of statements is added later.

If a break statement is included in a while, do - while or for loop, then control will immediately be
transferred out of the loop when the break statement is encountered. This provides a convenient way to
terminate the loop if an error or other irregular condition is detected.

EXAMPLE 6.28 Here are some illustrations of loops that contain break statements. In each situation, the loop will
continue to execute as long as the current value for the floating-point variable x does not exceed 100. However, the
computation will break out of the loop if a negative value for x is detected.

First, consider awhile loop.

scanf ("%f", &x);
while (x <= 100) {
if (x < 0) {
printf("ERROR - NEGATIVE VALUE FOR X");
break;
}

/* process the nonnegative value of x */

scanf("%f", &x);

Now consider a do - while loop that does the same thing.

do {
scanf ("%f*, &x);
if (x < 0) {
printf ("ERROR - NEGATIVE VALUE FOR X");
break;
}

/* process the nonnegative value of x */
} while (x <= 100);
Finally, here is a for loop that is similar.

for (count = 1; x <= 100; ++count) {
scanf ("%f", &x);
if (x < 0) {
printf (*ERROR - NEGATIVE VALUE FOR X*");
break;

}

/* process the nonnegative value of x */

CHAP. 6] CONTROL STATEMENTS 155

In the event of several nested while, do - while, for or switch statements, a break statement will
cause a transfer of control out of the immediate enclosing statement, but not out of the outer surrounding
statements. We have seen one illustration of this in Example 6.26, where a switch statement is embedded
within a while statement. Another illustration is shown below.

EXAMPLE 6.29 Consider the following outline of a while loop embedded within a for loop.
for (count = 0; count <= n; ++count) {

while (¢ = getchar() I= '\n') {
if (¢ = '*') break;

If the character variable ¢ is assigned an asterisk (*), then the while loop will be terminated. However, the for loop will
continue to execute. Thus, if the value of count is less than n when the breakout occurs, the computer will increment
count and make another pass through the for loop.

6.9 THE continue STATEMENT

The continue statement is used to bypass the remainder of the current pass through a loop. The loop does
not terminate when a continue statement is encountered. Rather, the remaining loop statements are skipped
and the computation proceeds directly to the next pass through the loop. (Note the distinction between
continue and break.)

The continue statement can be included within a while, a do - while or a for statement. It is written

simply as
continue;
without any embedded statements or expressions.
EXAMPLE 6.30 Here are some illustrations of loops that contain continue statements.

First, consider a do - while loop.

do {
scanf ("%T", &x);
if (x < 0) {
printf ("ERROR - NEGATIVE VALUE FOR X");
continue;
| H

/* process the nonnegative value of x */

} while (x <= 100);
Here is a similar for loop.

for (count = 1; x <= 100; ++count) {
scanf ("%T", &x);
if (x < 0) |
printf("ERROR - NEGATIVE VALUE FOR X');
continue;

156 CONTROL STATEMENTS [CHAP. 6

/* process the nonnegative value of x */

In each case, the processing of the current value of x will be bypassed if the value of x is negative. Execution of the loop
will then continue with the next pass.

It is interesting to compare these structures with those shown in Example 6.28, which make use of the break
statement instead of the continue statement. (Why is a modification of the while loop shown in Example 6.28 not

included in this example?)

EXAMPLE 6.31 Averaging a List of Nonnegative Numbers In Example 6.17 we saw a complete C program that
uses a for loop to calculate the average of a list of n numbers. Let us now modify this program so that it processes only
nonnegative numbers.

The earlier program requires two minor changes to accommodate this modification. First, the for loop must include
an if statement to determine whether or not each new value of x is nonnegative. A continue statement will be included
in the if statement to bypass the processing of negative values of x. Secondly, we require a special counter (navg) to
determine how many nonnegative numbers have been processed. This counter will appear in the denominator when the
average is calculated (i.e., the average will be determined as average = sum/navg).

Here is the actual C program. It is interesting to compare it with the program shown in Example 6.17.

/* calculate the average of the nonnegative numbers in a list of n numbers */
#include <stdio.h>

main()

int n, count, navg = O;
float x, average, sum = 0;

/* initialize and read in a value for n */
printf ("How many numbers? ");
scanf(*%d", &n);

/* read in the numbers */
for (count = 1; count <= n; ++count) {
printf(‘x = *});
scanf (“%f", &x);
it (x < 0) continue;
sum += X;
++navg;

}

/* calculate the average and write out the answer */
average = sum/navg;
printf("\nThe average is %f\n", average);

When the program is executed with nonnegative values for x, it behaves exactly like the earlier version presented in
Example 6.17. When some of the x's are assigned negative values, however, the negative values are ignored in the
calculation of the average.

A sample interactive session is shown below. As usual, the user’s responses are underlined.

CHAP. 6] CONTROL STATEMENTS 157

How many numbers? 6

X X X X X X
1]
ltl.:mlrlolml-l‘l_‘

The average is 2.000000

This is the correct average of the positive numbers, Note that the average would be zero if all of the numbers had been
averaged.

6.10 THE COMMA OPERATOR

We now introduce the comma operator (,) which is used primarily in conjunction with the for statement.
This operator permits two different expressions to appear in situations where only one expression would
ordinarily be used. For example, it is possible to write

for (expression 1a, expression 1b; expression 2; expression 3) statement

where expression 1a and expression 1b are the two expressions, separated by the comma operator,
where only one expression (expression 1) would normally appear. These two expressions would typically
initialize two separate indices that would be used simultaneously within the for loop.

Similarly, a for statement might make use of the comma operator in the following manner.

for (expression 1; expression 2; expression 3a, expression 3b) statement

Here expression 3aand expression 3b, separated by the comma operator, appear in place of the usual
single expression. In this application the two separate expressions would typically be used to alter (e.g.,
increment or decrement) two different indices that are used simultaneously within the loop. For example, one
index might count forward while the other counts backward.

EXAMPLE 6.32 Searching for Palindromes A palindrome is a word, phrase or sentence that reads the same way
cither forward or backward. For example, words such as noon, peep, and madam are palindromes. If we disregard
punctuation and blank spaces, then the sentence Rise to vote, sir! is also a palindrome.

Let us write a C program that will enter a line of text containing a word, a phrase or a sentence, and determine
whether or not the text is a palindrome. To do so, we will compare the first character with the last, the second character
with the next to last, and so on, until we have reached the middle of the text. The comparisons will include punctuation
and blank spaces.

In order to outline a computational strategy, let us define the following variables.

letter

I

a character-type array containing as many as 80 elements. These elements will be the characters in
the line of text.

tag = an integer variable indicating the number of characters assigned to letter, excluding the escape
character \0 at the end.

count = an integer variable used as an index when moving forward through letter.
countback = an integer variable used as an index when moving backward through letter.

flag

an integer variable that will be used to indicate a true/false condition. True will indicate that a
palindrome has been found.

loop = an integer variable whose value will always equal 1, thus appearing always to be true. The intent
here is to continue execution of a main loop, until a particular stopping condition causes a breakout.

158 CONTROL STATEMENTS [CHAP. 6

We can now outline our overall strategy as follows.
1. Define the symbolic constants EOL (end-of-line), TRUE and FALSE.
2. Declare all variables and initialize 1oop (i.c., assign TRUE to loop).
Enter the main loop.
(a) Assign TRUE to T1ag, in anticipation of finding a palindrome.
(6) Read in the line of text on a character-by-character basis, and store in letter.

(c) Test to see if the uppercase equivalents of the first three characters are E, N and D, respectively. If so,
break out of the main loop and exit the program.

(d) Assign the final value of count, less 1, to tag. This value will indicate the number of characters in the
line of text, not including the final escape character \0.

(e) Compare each character in the first half of 1etter with the corresponding character in the second haif. If
a mismatch is found, assign FALSE to f1lag and break out of the (inner) comparison loop.

(/) If flag is TRUE, display a message indicating that a palindrome has been found. Otherwise, display a
message indicating that a palindrome has not been found.

4. Repeat step 3 (i.e., make another pass through the outer loop), thus processing another line of text.

Here is the corresponding pseudocode.

#include files
#define symbolic constants
main()
{
/* declare all variables and initialize as required */
while (loop) {
flag = TRUE; /* anticipating a palindrome */
/* read in a line of text and store in letter */

/* break out of while loop if first three characters
of letter spell END (test uppercase equivalents) */

/* assign number of characters in text to tag */
for ((count = 0, countback = tag); count <= (tag - 1)/ 2;(++count, --countback)) {

if (letter[count] |= letter[countback]) {
flag = FALSE;

/* not a palindrome - break out of for loop */

}

/* display a message indicating whether or not letter contains a palindrome */

The program utilizes the comma operator within a for loop to compare each character in the first half of letter
with the corresponding character in the second half. Thus, as count increases from 0 to (tag - 1) / 2, countback
decreases from tag to (tag / 2) + 1. Note that integer division (resulting in a truncated quotient) is involved in
establishing these limiting values.

CHAP. 6] CONTROL STATEMENTS 159

Also, observe that there will be two distinct comma operators within the for statement. Each comma operator and its
associated operands are enclosed in parentheses. This is not necessary, but it does emphasize that each operand pair
comprises one argument within the for statement.

The complete C program is shown below.

/* search for a palindrome */

#include <stdio.h>
#include <ctype.h>

#define EOL '\n’
#define TRUE 1
#define FALSE O

main()

{
char letter[80]};
int tag, count, countback, flag, loop = TRUE;

/* main loop */

while (loop) {
flag = TRUE;

/* read the text */

printf("Please enter a word, phrase or sentence below:\n");
for (count = 0O; (letter[count] = getchar()) !|= EOL; ++count)

’

if ((toupper(letter(0]) == 'E') && (toupper(letter(1]) == 'N') &&
(toupper(letter[2]) == 'D')) break;

tag = count - 1;

/* carry out the search */

for ((count = 0, countback = tag); count <= tag/2;
(++count, --countback)) {

if (letter[count] != letter[countback]) {
flag = FALSE;
break;

}
/* display message */

for (count = 0; count <= tag; ++count)
putchar(letter{count]);

if (flag) printf(" IS a palindrome\n\n");

else printf(" is NOT a palindrome\n\n®);

}

A typical interactive session is shown below, indicating the type of output that is generated when the program is
executed. As usual, the user’s responses are underlined.

Please enter a word, phrase or sentence below:

T00T

TOOT IS a palindrome

160 CONTROL STATEMENTS [CHAP. 6

Please enter a word, phrase or sentence below:
EALSE

FALSE is NOT a palindrome

Please enter a word, phrase or sentence below:
PULLUP

PULLUP IS a palindrome

Please enter a word, phrase or sentence below:

ABLE WAS I ERE I SAW ELBA IS a palindrome

Please enter a word, phrase or sentence below:
END

Remember that the comma operator accepts two distinct expressions as operands. These expressions will
be evaluated from left to right. In situations that require the evaluation of the overall expression (i.e., the
expression formed by the two operands and the comma operator), the type and value of the overall expression
will be determined by the type and value of the right operand.

Within the collection of C operators, the comma operator has the lowest precedence. Thus, the comma
operator falls within its own unique precedence group, beneath the precedence group containing the various
assignment operators (see Appendix C). Its associativity is left to right.

6.11 THE goto STATEMENT

The goto statement is used to alter the normal sequence of program execution by transferring control to some
other part of the program. In its general form, the goto statement is written as

goto label,

where label is an identifier that is used to label the target statement to which control will be transferred.

Control may be transferred to any other statement within the program. (To be more precise, control may
be transferred anywhere within the current function. We will introduce functions in the next chapter, and
discuss them thoroughly in Chapter 7.) The target statement must be labeled, and the label must be followed
by a colon. Thus, the target statement will appear as

label: statement

Each labeled statement within the program (more precisely, within the current function) must have a unique
label; i.e., no two statements can have the same label.

EXAMPLE 6.33 The following skeletal outline illustrates how the goto statement can be used to transfer control out of a
loop if an unexpected condition arises.

/* main loop */

scanf (“%f*, &x);
while (x <= 100) {

if (x < 0) goto errorcheck;

scanf ("%f", &x);

CHAP. 6] CONTROL STATEMENTS 161

/* error detection routine */

errorcheck: {
printf("ERROR - NEGATIVE VALUE FOR X"};

}

In this example control is transferred out of the while loop, to the compound statement whose label is errorcheck, if a

negative value is detected for the input variable x.
The same thing could have been accomplished using the break statement, as illustrated in Example 6.28. The use of

the break statement is actually the preferred approach. The use of the goto statement is presented here only to illustrate
the syntax.

All of the popular general-purpose programming languages contain a goto statement, though modem
programming practice discourages its use. The goto statement was used extensively, however, in early
versions of some older languages, such as Fortran and BASIC. The most common applications were:

I. Branching around statements or groups of statements under certain conditions.

2. Jumping to the end of a loop under certain conditions, thus bypassing the remainder of the loop during the
current pass.
3. Jumping completely out of a loop under certain conditions, thus terminating the execution of a loop.

The structured features in C enable all of these operations to be carried out without resorting to the goto
statement. For example, branching around statements can be accomplished with the if - else statement;
jumping to the end of a loop can be carried out with the continue statement; and jumping out of a loop is
easily accomplished using the break statement. The use of these structured features is preferrable to the use
of the goto statement, because the use of goto tends to encourage (or at least, not discourage) logic that skips
all over the program whereas the structured features in C require that the entire program be written in an
orderly, sequential manner. For this reason, use of the goto statement should generally be avoided.

Occasional situations do arise, however, in which the goto statement can be useful. Consider, for
example, a situation in which it is necessary to jump out of a doubly nested loop if a certain condition is
detected. This can be accomplished with two if - break statements, one within each loop, though this is
awkward. A better solution in this particular situation might make use of the goto statement to transfer out of
both loops at once. The procedure is illustrated in the following example.

EXAMPLE 6.34 Converting Several Lines of Text to Uppercase Example 6.19 presents a program to convert
several successive lines of text to uppercase, processing one line of text at a time, until the first character in a new line is
an asterisk (*). Let us now modify this program to detect a break condition, as indicated by two successive dollar signs
($%) anywhere within a line of text. If the break condition is encountered, the program will print the line of text
containing the dollar signs, followed by an appropriate message. Execution of the program will then terminate.

The logic will be the same as that given in Example 6.19, except that an additional loop will now be added to test for
two consecutive dollar signs. Thus the program will proceed as follows.

1. Assign an initial value of 1 to the outer loop index (1inecount).

2. Carry out the following steps repeatedly, for successive lines of text, as long as the first character in the line is
not an asterisk.
(@) Read in aline of text and assign the individual characters to the elements of the char-type array letter.
A line will be defined as a succession of characters that is terminated by an end-of-line (i.e, a newline)
designation.

(6) Assign the character count, including the end-of-line character, to tag.

162 CONTROL STATEMENTS [CHAP. 6

(¢) Display the line in uppercase, using the library function toupper to carry out the conversion. Then
display two newline characters (so that the next line of input will be separated from the current output by a
blank line), and increment the line counter (1inecount).

(d) Test all successive characters in the line for two successive dollar signs. If two successive dollar signs are
detected, then display a message indicating that a break condition has been found and jump to the
terminating condition at the end of the program (see below).

3. Once an asterisk has been detected as the first character of a new line, write out “Good bye.” and terminate the
computation.

Here is the complete C program.

/* convert several lines of text to uppercase

Continue conversion until the first character in a line is an asterisk (*).
Break out of the program sooner if two successive dollar signs ($$) are detected */

#include <stdio.h>
#include <ctype.h>

#define EOL '\n'
main()

{
char letter([80];
int tag, count, linecount = 1;

while ((letter[0] = getchar()) I= '*') {

/* read in a line of text */
for (count = 1; (letter[count] = getchar()) != EOL; ++count)

]
tag = count;

/* display the line of text */

for (count = 0; count < tag; ++count)
putchar(toupper(letterjcount]));

printf{"\n\n*");

++linecount;

/* test for a break condition */
for (count=1; count < tag; ++count)

if (letter[count-1] == '$' 8&& letter[count] == '§"') {
printf ("BREAK CONDITION DETECTED - TERMINATE EXECUTION\n\n");
goto end;

}

}
end: printf("Good bye");

}

It is interesting to compare this program with the corresponding program presented earlier, in Example 6.19. The
present program contains an additional for loop embedded at the end of the while loop. This for loop examines
consecutive pairs of characters for a break condition ($$), after the entire line has already been written out in uppercase. If
a break condition is encountered, then control is transferred to the final printf statement ("Good bye*®) which is now
labeled end. Note that this transfer of control causes a breakout from the it statement, the current for loop, and the outer
while loop.

You should run this program, using both the regular terminating condition (an asterisk at the start of a new line) and
the breakout condition. Compare the results obtained with the output shown in Example 6.19.

CHAP. 6] CONTROL STATEMENTS 163

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8
6.9

6.10
6.11

6.12

6.13

6.14
6.15
6.16
6.17

6.18
6.19

6.20
6.21
6.22

6.23
6.24
6.25
6.26

6.27
6.28

6.29

Review Questions

What is meant by branching?
What is meant by selection?
What is meant by looping? Describe two different forms of looping.

Summarize the rules associated with the use of the four relational operators, the two equality operators, the two
logical connectives and the unary negation operator. What types of operands are used with each type of operator?

How are char-type constants and char-type variables interpreted when used as operands with a relational operator?
How do expression statements differ from compound statements? Summarize the rules associated with each.
What is the purpose of the if - else statement?

Describe the two different forms of the if - else statement. How do they differ?

Compare the use of the if - else statement with the use of the ?: operator. In particular, in what way can the ?:
operator be used in place of an if - else statement?

Summarize the syntactic rules associated with the if - else statement
How are nested if - else statements interpreted? In particular, how is the following interpreted?
if e? if e2 st
else s2
Which logical expression is associated with the else clause?
What happens when an expression is encountered whose value is nonzero within a group of nested if - else
statements?
What is the purpose of the while statement? When is the logical expression evaluated? What is the minimum
number of times that a while loop can be executed?

How is the execution of a while loop terminated?

Summarize the syntactic rules associated with the while statement.

What is the purpose of the do - while statement? How does it differ from the while statement?

What is the minimum number of times that a do - while loop can be executed? Compare with a while loop and
explain the reasons for the differences.

Summarize the syntactic rules associated with the do - while statement. Compare with the while statement.
What is the purpose of the for statement? How does it differ from the while statement and the do - while
statement?

How many times will a for loop be executed? Compare with the while loop and the do - while loop.

What is the purpose of the index in a for statement?

Can any of the three initial expressions in the for statement be omitted? If so, what are the consequences of each
omission?

Summarize the syntactic rules associated with the for statement.

What rules apply to the nesting of loops? Can one type of loop be embedded within another?

Can loops be nested within if - else statements? Can if - else statements be nested within loops?

What is the purpose of the switch statement? How does this statement differ from the other statements described
in this chapter?

What are case labels (case prefixes)? What type of expression must be used to represent a case label?

Summarize the syntactic rules associated with the use of the switch statement. Can multiple case labels be
associated with one alternative?

What happens when the value of the expression in the switch statement matches the value of one of the case
labels? What happens when the value of this expression does not match any of the case labels?

164

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

6.40

6.41
6.42

6.43

6.44

6.45

CONTROL STATEMENTS [CHAP. 6

Can a default alternative be defined within a switch statement? If so, how would the default alternative be
labeled?

Compare the use of the switch statement with the use of nested if - else statements. Which is more
convenient?

What is the purpose of the break statement? Within which control statements can the break statement be
included?

Suppose a break statement is included within the innermost of several nested control statements. What happens
when the break statement is executed?

What is the purpose of the continue statement? Within which control statements can the continue statement be
included? Compare with the break statement.

What is the purpose of the comma operator? Within which control statement does the comma operator usually
appear?

In situations that require the evaluation of an expression containing the comma operator, which operand will
determine the type and the value of the entire expression (i.e., the expression to the left of the comma operator or
the expression to the right)?

What is the precedence of the comma operator compared with other C operators?

What is the purpose of the goto statement? How is the associated target statement identified?

Are there any restrictions that apply to where control can be transferred within a given C program?

Summarize the syntactic rules associated with the goto statement.

Compare the syntax associated with statement labels with that of case labels (case prefixes).

Why is the use of the goto statement generally discouraged? Under what conditions might the goto statement be
helpful? What types of usage should be avoided, and why? Discuss thoroughly.

Problems

Explain what happens when the following statement is executed.
it (abs(x) < xmin) x = (x > 0) ? xmin : -xmin;
Is this a compound statement? Is a compound statement embedded within this statement?

Identify all compound statements that appear within the following program segment.

{
sum = 0;
do
scanf ("%d", &i);
it (1 < 0) {
i=-i;
++flag;
}
sum += 1i;
} while (i != 0);
}

Write a loop that will calculate the sum of every third integer, beginning with i = 2 (i.e, calculate the sum 2 + 5 +
8+ 11+ ---)forall values of i that are less than 100. Write the loop three different ways.

(a) Using awhile statement.
() Using a do - while statement.

(¢) Using a for statement.

CHAP. 6] CONTROL STATEMENTS 165

6.46

6.47

6.48

6.49

6.50

6.51

6.52

6.53

6.54

6.55

Repeat Prob. 6.45 calculating the sum of every nth integer, beginning with the value assigned to nstart (i.e., for
i = nstart, nstart + n, nstart + 2*n, nstart + 3*n, etc.). Continue the looping process for all
values of i that do not exceed nstop.

Write a loop that will examine each character in a character-type array called text, and write out the ASCII
equivalent (i.e, the numerical value) of each character. Assume that the number of characters in the array is
specified in advance by the integer variable n. Write the loop three different ways.

(a) Using a while statement.
(b) Using ado - while statement.

(¢) Using a for statement.

Repeat Prob. 6.47 assuming that the number of characters in the array is not specified in advance. Continue the
looping action until an asterisk (*) is encountered. Write the loop three different ways, as before.

Generalize Prob. 6.45 by generating a series of loops, each loop generating the sum of every jth integer, where j
ranges from 2 to 13. Begin each loop with a value of i = 2, and increase i by j until i takes on the largest
possible value that is less than 100. (In other words, the first loop will calculate the sum2 +4 + 6 + - - - + 98; the
second loop will calculate the sum 2 + 5 + 8 + - - - + 98; the third loop will calculate the sum2+6+ 10+ - - +
98; and so on. The last loop will calculate the sum 2 + I5+ 28 +* -+ + 93.) Display the value of each complete
sum.

Use a nested loop structure to solve this problem, with one loop embedded within another. Calculate each
sum with the inner loop, and let the outer loop control the value of j that is used by each pass through the inner
loop. Use a for statement to structure the outer loop, and use each of the three different loop statements (while,
do - while and for) for the inner loop. Develop a separate solution for each type of inner loop.

Write a loop that will generate every third integer, beginning with i = 2 and continuing for all integers that are less
than 100. Calculate the sum of those integers that are evenly divisible by 5. Use two different methods to carry
out the test.

(a) Use the conditional operator (?:).

(b) Usean if - else statement.

Generalize Prob. 6.50 by generating every nth integer, beginning with nstart (i.e., i = nstart, nstart + n,
nstart + 2*n, nstart + 3*n, etc.). Continue the looping process for all values of i that do not exceed

nstop. Calculate the sum of those integers that are evenly divisible by k, where k represents some positive
integer.

Write a loop that will examine each character in a character-type array called text and determine how many of
the characters are letters, how many are digits, how many are whitespace characters, and how many are other kinds
of characters (e.g., punctuation characters). Assume that text contains 80 characters.

Write a loop that will examine each character in a character-type array called text and determine how many of
the characters are vowels and how many are consonants. (Hint: First determine whether or not a character is a
letter; if so, determine the type of letter.) Assume that text contains 80 characters.

Write a switch statement that will examine the value of an integer variable called flag and print one of the
following messages, depending on the value assigned to f1ag.

(@) HOT, if flag has a value of 1

(b) LUKE WARM, if flag has a value of 2

(c) COLD, if flag has a value of 3

(d) OUT OF RANGE if flag has any other value

Write a switch statement that will examine the value of a char-type variable called color and print one of the
following messages, depending on the character assigned to color.
(a) RED, if either r or R is assigned to color,

(b) GREEN, if either g or G is assigned to color,

166

6.56

6.57

6.58

(©

CONTROL STATEMENTS

BLUE, if either b or B is assigned to color,

(d) BLACK, if color is assigned any other character.

[CHAP. 6

Write an appropriate control structure that will examine the value of a floating-point variable called temp and
print one of the following messages, depending on the value assigned to temp.

(@)

ICE, if the value of temp is less than 0.

(b) WATER, if the value of temp lies between 0 and 100.
STEAM, if the value of temp exceeds 100.

Can a switch statement be used in this instance?

(©)

Write a for loop that will read the characters in a character-type array called text and write the characters
backwards into another character-type array called backtext. Assume that text contains 80 characters. Use the

comma operator within the for loop.

Describe the output that will be generated by each of the following C programs. (Note the similarities in the
programs that are shown across from each other.)

(a)

(©

#include <stdio.h> (b) #include <stdio.h>
main () main()
{ {
int i = 0, x = 0; int i = 0, x = 0;
while (i < 20) { do {
if (1 %5 ==0) ({ if (1 % 5 == 0)
X += 1ij X+4+;
printf(*%sd ", x); printf(*%sd ", x);
} }
++1; ++1;
} } while (i < 20);
printf("\nx = %d", x); printf(*"\nx = %d", x);
} }
#include <stdio,h> (d) #include <stdio.h>
main() main()
{ {
int i =0, x = 0; int i = 0, x = 0;

for (1 =1; 1 <10; i *= 2) {

X++;

printf("%d ", x);

}

printf("\nx = %d", x);

for (i = 1; i < 10; ++1)
if (1 %2 ==1)
X += 1,
else
X--3
printf(*sd ", x);
}
printf("\nx = %d*, x};

{

CHAP. 6]
(¢) #include <stdio.h>)]
main()
{

int i =0, x = 0;

for (1 = 1; 1 < 10; ++i) {
if (1% 2 ==1)
X += 1i;
else
X--3
printf("%d *, x);
continue;

}
printf(“\nx = %d*, x};

(g) #include <stdio.h>
main()

{

int i, j, x = 0;

for (1 =0; 1 < 5; ++1i)
for (j = 0; j < ij ++j) {
X 4= (1 +] - 1);
printf(*%d *, x);
}
printf("\nx = %d*, x);

(h) #include <stdio.h> (@)

main()

{
int i, j, x = 0;
for (1 = 0; 1 < 5; ++1)
for (j = 0; j < ij ++j) {
X += (1 +] - 1);
printf(“%d *, x);
break;

}
printf(*\nx = %d*, x);

CONTROL STATEMENTS

#include <stdio.h>
main()

{

int i =0, x = 0;

for (i = 1; 1 < 10; ++i) {

if (1% 2==1)

X += 1;
else

X--5
printf("%d *, x);
break;

}
printf("\nx = %d", x);

#include <stdio.h>
main()

{
int i, j, x = 0;
for (1L =0; 1 < 5; ++i) {
for (j = 0; j < ij ++j)
X += (i +3 - 1);
printf(*%d *, x);
break;

}
printf(*\nx = %d", x),

167

168 CONTROL STATEMENTS

#include <stdio.h>

) #include <stdio.h>
main()
{
int i, j, k, x = 0;
for (1 = 0; 1 < 5; ++i)
for (j = 0; j < ij ++j) {
k=(i+73j-1);
if (k % 2 == 0)
x += k;
else
if (k % 3 == 0)
x += k - 2;
printf("%sd ", x);
}
printf("\nx = %d", x);
}
(k) #include <stdio.h> ()
main() main()
{ {

int i, j, k, x = 0;

for (i = 0; 1 < 5; ++i)
for (j = 0; j <1i; ++j) {

switch (1 + j - 1) {

case -1:
case O:
X += 13
break;
case 1:
case 2:
case 3:
X += 2;
break;
default:
X += 3;
}

printf('sd *, x);

}
printf("\nx = %d", x);

int i, j, k, x = 0;

for (1 = 0; i < 5; ++i)
for (j = 0; § < 1i; ++j)

switch (1 + j - 1)

case -1:
case 0:
X += 1;
break;
case 1:
case 2:
case 3:
X += 2;
default:
X += 3;
}
printf(*"%sd *, x);
}
printf(*"\nx = %d", x);

[CHAP. 6

CHAP. 6] CONTROL STATEMENTS 169

6.59

6.60

6.61

6.62

6.63
6.64

6.65

6.66

6.67

6.68

6.69

Programming Problems

Modify the programs given in Examples 6.9, 6.12 and 6.16 so that each program does the following:
(@) Read in a line of uppercase text, store it in an appropriate array, and then write it out in lowercase.

(b) Read in a line of mixed text, store it in an appropriate array, and then write it out with all lowercase and
uppercase letters reversed, all digits replaced by Os, and all other characters (nonletters and nondigits)
replaced by asterisks (*).

Compile and execute the programs given in Examples 6.10, 6.13 and 6.17, using the following 10 numbers:
27.5, 13.4, 538, 292, 745, 870, 399, 477, 8.1, 632

Compile and execute the program given in Example 6.31 using the following 10 numbers:
275, -13.4, 538, -29.2, 745, 870, 399, -477, -8.1, 632

Compare the calculated result with the results obtained for the fast problem.

Modify the program given in Example 6.10 so that the size of the list of numbers being averaged is not specified
in advance. Continue looping (i.e., reading in a new value for x and adding it to sum) until a value of zero is
entered. Thus, x = 0 will signal a stopping condition.

Repeat Problem 6.62 for the program given in Example 6.17.

Rewrite the depreciation program given in Example 6.26 to use the if - else statement instead of the switch
statement. Test the program using the data given in Example 6.26. Which version do you prefer? Why?

The equation
X +3x2-10=0

which was presented in Example 6.22, can be rearranged into the form

x=y(10-x%)/3

Rewrite the program presented in Example 6.22 to make use of the above form of the equation. Run the program
and compare the calculated results with those presented in Example 6.22. Why are the results different? (Do
computers always generate correct answers?)

Modify the program given in Example 6.22, which solves for the roots of an algebraic equation, so that the while
statement is replaced by a do - while statement. Which structure is best suited for this particular problem?

Modify the program given in Example 6.22, which solves for the roots of an algebraic equation, so that the while
statement is replaced by a for statement. Compare the use of the for, while and do - while statements. Which
version do you prefer, and why?

Add an error-trapping routine similar to that given in Example 6.21 to the depreciation program in Example 6.26.
The routine should generate an error message, followed by a request to reenter the data, whenever a nonpositive
input value is detected.

Write a complete C program for each of the problems presented below. Use whatever control structures are most
appropriate for each problem. Begin with a detailed outline. Rewrite the outline in pseudocode if the translation
into a working C program is not obvious. Be sure to use good programming style (comments, indentation, etc.).

(@) Calculate the weighted average of a list of n numbers, using the formula
g ~Six1 gt ok,
where the /s are fractional weighting factors, i.c.,
Osfi<landfy+fh+ +f=1

Test your program with the following data:

170

(®)

(©

(d)

(e)

CONTROL STATEMENTS [CHAP. 6

i=1 /=0.06 x=275
2 0.08 13.4
3 0.08 53.8
4 0.10 29.2
5 0.10 74.5
6 0.10 87.0
7 0.12 399
8 0.12 47.7
9 0.12 8.1
10 0.12 63.2

Calculate the cumulative product of a list of » numbers. Test your program with the following six data
items: 6.2, 123, 5.0, 1838, 7.1, 12.8.

Calculate the geometric average of a list of numbers, using the formula

xavg= [xlx2X3 Ce x"]l/n
Test your program using the values of x given in part (b) above. Compare the results obtained with the
arithmetic average of the same data. Which average is larger?

Determine the roots of the quadratic equation
a2 +bx+c=0
using the well-known quadratic formula

e —bt Vb - dac

2a

(see Example 5.6). Allow for the possibility that one of the constants has a value of zero, and that the
quantity b2 — 4ac is less than or equal to zero. Test the program using the following sets of data:

a=2 b=6 c=1
3 3 0
1 3 1
0 12 -3
3 6 3
2 —4 3

The Fibonacci numbers are members of an interesting sequence in which each number is equal to the sum
of the previous two numbers. In other words,

Fi=Fioy*Figp
where F; refers to the ith Fibonacci number. By definition, the first two Fibonacci numbers equal 1; i.e,,
Fi=F)=1
Hence,
Fy=Fy+F =1+1=2
Fp=F3+Fy=2+1=3
Fs=F4+F3=3+2=5

and so on.

CHAP. 6]

®

(h)

O]

0]

(%)

CONTROL STATEMENTS 171

Write a program that will determine the first » Fibonacci numbers. Test the program withn=7,n=
10, n=17 and n = 23.

A prime number is a positive integer quantity that is evenly divisible (without a remainder) only by 1 or by
itself. For example, 7 is a prime number, but 6 is not.

Calculate and tabulate the first n prime numbers. (Hint: A number, n, will be a prime if the
remainders of n/2, n/3, n/4, . . ., n/\/; are all nonzero.) Test your program by calculating the first 100
prime numbers.

Write an interactive program that will read in a positive integer value and determine the following:
() Ifthe integer is a prime number.
(i) If the integer is a Fibonacci number.
Write the program in such a manner that it will execute repeatedly, until a zero value is detected for the

input quantity. Test the program with several integer values of your choice.

Calculate the sum of the first » odd integers (i.e, 1 + 3+ 5+ - - -+ 2n ~ 1). Test the program by
calculating the sum of the first 100 odd integers (note that the last integer will be 199).

The sine of x can be calculated approximately by summing the first n terms of the infinite series
sinx=x—x/30+x5/5 = X7+ -+ -

where x is expressed in radians (Note: & radians = 180°).
Write a C program that will read in a value for x and then calculate its sine. Write the program two
different ways:

(/) Sum the first » terms, where n is a positive integer that is read into the computer along with the
numerical value for x.

(if) Continue adding successive terms in the series until the value of the next term becomes smaller (in
magnitude) than 105,

Test the program for x =1, x=2and x=-3. In each case, display the number of terms used to obtain the
final answer.

Suppose that P dollars are borrowed from a bank, with the understanding that 4 dollars will be repaid each
month until the entire loan has been repaid. Part of the monthly payment will be interest, calculated as i
percent of the current unpaid balance. The remainder of the monthly payment will be applied toward
reducing the unpaid balance.
Write a C program that will determine the following information:

(/) The amount of interest paid each month.

(if) The amount of money applied toward the unpaid balance each month.
(iti) The cumulative amount of interest that has been paid at the end of each month.
(iv) The amount of the loan that is still unpaid at the end of each month.

(v) The number of monthly payments required to repay the entire loan.
(vi) The amount of the last payment (since it will probably be less than A4).

Test your program using the following data: P = $40,000; 4 = $2,000; i = 1% per month.

A class of students eamned the following grades for the six examinations taken in a C programming course.

Name Exam Scores (percent)

Adams 45 80 80 95 55 75
Brown 60 50 70 75 55 80
Davis 40 30 10 45 60 55
Fisher 0 5 5 0 10 5

Hamilton 90 85 100 95 90 90

172

)

(m)

(n)

(9)

®

(@)

CONTROL STATEMENTS [CHAP. 6

Name Exam Scores (percent)

Jones 95 90 80 95 85 80
Ludwig 35 50 55 65 45 70
Osborne 75 60 75 60 70 80
Prince 85 75 60 85 90 100
Richards 50 60 50 35 65 70
Smith 70 60 75 70 55 75
Thomas 10 25 35 20 30 10
Wolfe 25 40 65 75 85 95
Zorba 65 80 70 100 60 95

Write an interactive C program that will accept each student’s name and exam grades as input, determine an
average grade for each student, and then display the student’s name, the individual exam grades and the
calculated average.

Modify the program written for part (k) above to allow for unequal weighting of the individual exam
grades. In particular, assume that each of the first four exams contributes 15 percent to the final score, and
each of the last two exams contributes 20 percent.

Extend the program written for part (/) above so that an overall class average is determined in addition to
the individual student averages.

Write a C program that will allow the computer to be used as an ordinary desk calculator. Consider only
the common arithmetic operations (addition, subtraction, multiplication and division). Include a memory
that can store one number.

Generate the following “pyramid” of digits, using nested loops.

1
232
34543
4567654
567898765
67890109876
7890123210987
890123454321098
90123456765432109
0123456789876543210

Do not simply write out 10 multidigit strings. Instead, develop a formula to generate the appropriate
output for each line.

Generate a plot of the function

y=e"0sin 0.5

on a printer, using an asterisk (*) for each of the points that makes up the plot. Have the plot run vertically
down the page, with one point (one asterisk) per line. (Hint: Each printed line should consist of one
asterisk, preceded by an appropriate number of blank spaces. Determine the position of the asterisk by
rounding the value of y to the nearest integer, scaled to the maximum number of characters per line.)

Write an interactive C program that will convert a positive integer quantity to a roman numeral (e.g., 12
will be converted to XII, 14 will be converted to XIV, and so on). Design the program so that it will
execute repeatedly, until a value of zero is read in from the keyboard.

CHAP. 6] CONTROL STATEMENTS 173

r) Write an interactive C program that will convert a date, entered in the form mm-dd-yy (example: 4-12-99)
into an integer that indicates the number of days beyond January 1, 1980. If the year does not extend
beyond 1999 (i.e., if yy <99), we can make use of the following relationships:

(i) The day of the current year can be determined approximately as
day = (int) (30.42 * (mm - 1)) + dd

(i) If mm == 2 (February), increase the value of day by 1.
(i) Ifmm > 2andmm < 8 (March, April, May, June or July), decrease the value of day by 1.
(v) Ifyy % 4 == Oandmm > 2 (leap year), increase the value of day by 1.
(v) Increase the value of day by 1461 for each full 4-year cycle beyond 1-1-80.
(vi) Increase day by 365 for each additional full year beyond the completion of the last full 4-year cycle,
then add 1 (for the most recent leap year).

Test the program with today’s date, or any other date of your choice.

(s) Extend part (r) above to accommodate calendar years beyond the year 1999 (Example 10.28 presents a
solution to a more advanced version of this problem).

Chapter 7

Functions

We have already seen that C supports the use of library functions, which are used to carry out a number of
commonly used operations or calculations (see Sec. 3.6). However, C also allows programmers to define their
own functions for carrying out various individual tasks. This chapter concentrates on the creation and
utilization of such programmer-defined functions.

The use of programmer-defined functions allows a large program to be broken down into a number of
smaller, self-contained components, each of which has some unique, identifiable purpose. Thus a C program
can be modularized through the intelligent use of such functions. (C does not support other forms of modular
program development, such as the procedures in Pascal or the subroutines in Fortran.)

There are several advantages to this modular approach to program development. For example, many
programs require that a particular group of instructions be accessed repeatedly, from several different places
within the program. The repeated instructions can be placed within a single function, which can then be
accessed whenever it is needed. Moreover, a different set of data can be transferred to the function each time
it is accessed. Thus, the use of a_function avoids the need for redundant (repeated) programming of the same
instructions.

Equally important is the logical clarity resulting from the decomposition of a program into several
concise functions, where each function represents some well-defined part of the overall problem. Such
programs are easier to write and easier to debug, and their logical structure is more apparent than programs
which lack this type of structure. This is especially true of lengthy, complicated programs. Most C programs
are therefore modularized in this manner, even though they may not involve repeated execution of the same
tasks. In fact the decomposition of a program into individual program modules is generally considered to be
an important part of good programming practice.

The use of functions also enables a programmer to build a customized library of frequently used routines
or of routines containing system-dependent features. Each routine can be programmed as a separate function
and stored within a special library file. If a program requires a particular routine, the corresponding library
function can be accessed and attached to the program during the compilation process. Hence a single function
can be utilized by many different programs. This avoids repetitive programming between programs. It also
promotes portability since programs can be written that are independent of system-dependent features.

In this chapter we will see how functions are defined and how they are accessed from various places
within a C program. We will then consider the manner in which information is passed to a function. Our
discussion will include the use of function profotypes, as recommended by the current ANSI standard. And
finally, we will discuss an interesting and important programming technique known as recursion, in which a
function can access itself repeatedly.

7.1 A BRIEF OVERVIEW

A function is a self-contained program segment that carries out some specific, well-defined task. Every C
program consists of one or more functions (see Sec. 1.5). One of these functions must be called main.
Execution of the program will always begin by carrying out the instructions in main. Additional functions
will be subordinate to main, and perhaps to one another.

If a program contains multiple functions, their definitions may appear in any order, though they must be
independent of one another. That is, one function definition cannot be embedded within another.

A function will carry out its intended action whenever it is accessed (i.e., whenever the function is
“called) from some other portion of the program. The same function can be accessed from several different

174

CHAP. 7] FUNCTIONS 175

places within a program. Once the function has carried out its intended action, control will be returned to the
point from which the function was accessed.

Generally, a function will process information that is passed to it from the calling portion of the program,
and return a single value. Information is passed to the function via special identifiers called arguments (also
called parameters), and returned via the return statement. Some functions, however, accept information but
do not return anything (as, for example, the library function printf), whereas other functions (e.g., the
library function scanf) return multiple values.

EXAMPLE 7.1 Lowercase to Uppercase Character Conversion In Example 3.31 we saw a simple C program that
read in a single lowercase character, converted it to uppercase using the library function toupper, and then displayed the
uppercase equivalent. We now consider a similar program, though we will define and utilize our own function for
carrying out the lowercase to uppercase conversion.

Our purpose in doing this is to illustrate the principal features involved in the use of functions. Hence, you should
concentrate on the overall logic, and not worry about the details of each individual statement just yet.

Here is the complete program.

/* convert a lowercase character to uppercase using a programmer-defined function */

#include <stdio.h>

char lower_to_upper(char c1) /* function definition */

{

char c2;

c2 = (c1 > 'a' && ¢l <= '2') ? ('A* +c¢1 - 'a') : ci;
return{c2);

}
main()
{
char lower, upper,;
printf("Please enter a lowercase character: "};
scanf("%c", &lower);
upper = lower_to_upper{lower);
printf(*\nThe uppercase equivalent is %c\n\n", upper);
}

This program consists of two functions—the required main function, preceded by the programmer-defined function
lower_to_upper. Note that lower_to_upper carries out the actual character conversion. This function converts only
lowercase letters; all other characters are returned intact. A lowercase letter is transferred into the function via the
argument c¢1, and the uppercase equivalent, c2, is returned to the calling portion of the program (i.e., to main) via the
return statement.

Now consider the main function, which follows lower_to_upper. This function reads in a character (which may or
may not be a lowercase letter) and assigns it to the char-type variable lower. Function main then calls the function
lower_to_upper, transferring the lowercase character (lower) to lower_to_upper, and receiving the equivalent
uppercase character (upper) from lower_to_upper. The uppercase character is then displayed, and the program ends.
Notice that the variables 1lower and upper in main correspond to the variables c1 and ¢2 within lower_to_upper.

We will consider the rules associated with function definitions and function accesses in the remainder of
this chapter.

176 FUNCTIONS [CHAP. 7

7.2 DEFINING A FUNCTION

A function definition has two principal components: the first line (including the argument declarations), and
the body of the function.

The first line of a function definition contains the type specification of the value returned by the function,
followed by the function name, and (optionally) a set of arguments, separated by commas and enclosed in
parentheses. Each argument is preceded by its associated type declaration. An empty pair of parentheses
must follow the function name if the function definition does not include any arguments.

In general terms, the first line can be written as

data-type name(type 1 arg 1, type 2 arg 2, . . ., typen arg n)

where data- type represents the data type of the item that is returned by the function, name represents the
function name, and type 1, type 2,..., type n represent the data types of the arguments arg 7, arg 2,
..., arg n. The data types are assumed to be of type int if they are not shown explicitly. However, the
omission of the data types is considered poor programming practice, even if the data items are integers.

The arguments are called formal arguments, because they represent the names of data items that are
transferred into the function from the calling portion of the program. They are also known as parameters or
Jormal parameters. (The corresponding arguments in the function reference are called actual arguments,
since they define the data items that are actually transferred. Some textbooks refer to actual arguments simply
as arguments, or as actual parameters.) The identifiers used as formal arguments are “local” in the sense that
they are not recognized outside of the function. Hence, the names of the formal arguments need not be the
same as the names of the actual arguments in the calling portion of the program. Each formal argument must
be of the same data type, however, as the data item it receives from the calling portion of the program.

The remainder of the function definition is a compound statement that defines the action to be taken by
the function. This compound statement is sometimes referred to as the body of the function. Like any other
compound statement, this statement can contain expression statements, other compound statements, control
statements, and so on. It should include one or more return statements, in order to return a value to the
calling portion of the program.

A function can access other functions. In fact, it can even access itself (this process is known as recursion
and is discussed in Sec. 7.6).

EXAMPLE 7.2 Consider the function lower_to_upper, which was originally presented in Example 7.1.

char lower_to_upper(char ct) /* programmer-defined conversion function */

{

char c2;

c2 = (c1 >= 'a' && ¢c1 <= 'z') 7 ('A' +¢c1 - 'a') : c1;
return(c2);

The first line contains the function name, lower_to_upper, followed by the formal argument c1, enclosed in
parentheses. The function name is preceded by the data type char, which describes the data item that is returned by the
function. In addition, the formal argument c1 is preceded by the data type char. This later data type, which is included
within the pair of parentheses, refers to the formal argument. The formal argument, c1, represents the lowercase character
that is transferred to the function from the calling portion of the program.

The body of the function begins on the second line, with the declaration of the local char-type variable c2. (Note the
distinction between the formal argument c1, and the local variable c2.) Following the declaration of c2 is a statement
that tests whether c1 represents a lowercase letter and then carries out the conversion. The original character is returned
intact if it is not a lowercase letter. Finally, the return statement (see below) causes the converted character to be
returned to the calling portion of the program.

CHAP. 7] FUNCTIONS 177

Information is returned from the function to the calling portion of the program via the return statement.
The return statement also causes the program logic to return to the point from which the function was

accessed.
In general terms, the return statement is written as

return expression,

The value of the expression is returned to the calling portion of the program, as in Example 7.2 above. The
expressionis optional. If the expressionis omitted, the return statement simply causes control to revert
back to the calling portion of the program, without any transfer of information.

Only one expression can be included in the return statement. Thus, a function can return only one value
to the calling portion of the program via return.

A function definition can include multiple return statements, each containing a different expression.
Functions that include multiple branches often require multiple returns.

EXAMPLE 7.3 Here is a variation of the function lower_to_upper, which appeared in Examples 7.1 and 7.2.

char lower_to_upper(char c1) /* programmer-defined conversion function */
{
if (c1 >= 'a’ && ct <= 'z')
return{'A*' + c1 - 'a');
else

return(cit);

This function utilizes the if - else statement rather than the conditional operator. It is somewhat less compact than
the original version, though the logic is clearer. In addition, note that this form of the function does not require the local
variable c2.

This particular function contains two different return statements. The first returns an expression that represents the
uppercase equivalent of the lowercase character ; the second returns the original lowercase character, unchanged.

The return statement can be absent altogether from a function definition, though this is generally
regarded as poor programming practice. If a function reaches the end without encountering a return
statement, control simply reverts back to the calling portion of the program without returning any information.
The presence of an empty return statement (without the accompanying expression) is recommended in such
situations, to clarify the logic and to accommodate future modifications to the function.

EXAMPLE 7.4 The following function accepts two integer quantities and determines the larger value, which is then
displayed. The function does not return any information to the calling program.

maximum(int x, int y) /* determine the larger of two integer quantities */
{
int z;

zZ=(x>y)?x:y;
printf("\n\nMaximum value = %d*, z);
return;

Notice that an empty return statement is included, as a matter of good programming practice. The function would still
work properly, however, if the return statement were not present.

178 FUNCTIONS [CHAP. 7

EXAMPLE 7.5 The factorial of a positive integer quantity, n, is definedasn! =1 x2x3 x> - xn Thus, 2!'=1x2=
2, 31=1x2x3=6; 4!=1x2x3x4=24;and so on.

The function shown below calculates the factorial of a given positive integer n. The factorial is returned as a long
integer quantity, since factorials grow in magnitude very rapidly as n increases. (For example, 8! = 40,320. This value,
expressed as an ordinary integer, mav be too large for some computers.)

long int factorial(int n) /* calculate the factorial of n */
{

int i;

long int prod = 1;

if (n > 1)
for (1 =2; 1 <= n; ++i)
prod *= i;

return(prod);

}

Notice the long int type specification that is included in the first line of the function definition. The local variable
prod is declared to be a long integer within the function. It is assigned an initial value of 1, though its value is
recalculated within a for loop. The final value of prod, which is returned by the function, represents the desired value of
n factorial.

If the data type specified in the first line is inconsistent with the expression appearing in the return
statement, the compiler will attempt to convert the quantity represented by the expression to the data type
specified in the first line. This could result in a compilation error, or it may involve a partial loss of data (e.g.,
due to truncation). In any event, inconsistencies of this type should be avoided.

EXAMPLE 7.6 The following function definition is identical to that in Example 7.5 except that the first line does not
include a type specification for the value that is returned by the function.

factorial(int n) /* calculate the factorial of n */
{

int 1i;

long int prod = 1;

it (n > 1)
for (i = 2; 1 <= n; ++i)
prod *= i;
return(prod);

}

The function expects to return an ordinary integer quantity, since there is no explicit type declaration in the first line
of the function definition. However the quantity being returned (prod) is declared as a long integer within the function.
This inconsistency can result in an error. (Some compilers will generate a diagnostic error and then stop without
completing the compilation.) The problem can be avoided, however, by adding a long int type declaration to the first
line of the function definition, as in Example 7.5.

The keyword void can be used as a type specifier when defining a function that does not return anything,
or when the function definition does not include any arguments. The presence of this keyword is not
mandatory, but it is good programming practice to make use of this feature.

EXAMPLE 7.7 Consider once again the function presented in Example 7.4, which accepts two integer quantities and
displays the larger of the two. Recall that this function does not return anything to the calling portion of the program.
Therefore, the function can be written as

CHAP. 7] FUNCTIONS 179

void maximum(x, y) /* determine the larger of two integer quantities */
int x, y;

{
int z;
Z=(Xx>=y¥)?2XxX:Yy;
printf(*\n\nMaximum value = %d", z);
return;

}

This function is identical to that shown in Example 7.4 except that the keyword void has been added to the first line,
indicating that the function does not return anything.

7.3 ACCESSING A FUNCTION

A function can be accessed (i.e., called) by specifying its name, followed by a list of arguments enclosed in
parentheses and separated by commas. If the function call does not require any arguments, an empty pair of
parentheses must follow the name of the function. The function call may be a part of a simple expression
(such as an assignment statement), or it may be one of the operands within a more complex expression.

The arguments appearing in the function call are referred to as actual arguments, in contrast to the formal
arguments that appear in the first line of the function definition. (They are also known simply as arguments,
or as actual parameters.) In a normal function call, there will be one actual argument for each formal
argument. The actual arguments may be expressed as constants, single variables, or more complex
expressions. However, each actual argument must be of the same data type as its corresponding formal
argument. Remember that it is the value of each actual argument that is transferred into the function and
assigned to the corresponding formal argument.

If the function returns a value, the function access is often written as an assignment statement; e.g.,

y = polynomial(x);

This function access causes the value returned by the function to be assigned to the variable y.
On the other hand, if the function does not return anything, the function access appears by itself; e.g.,

display(a, b, c¢);

This function access causes the values of a, b and ¢ to be processed internally (i.e., displayed) within the
function.

EXAMPLE 7.8 Consider once again the program originally shown in Example 7.1, which reads in a single lowercase
character, converts it to uppercase using a programmer-defined function, and then displays the uppercase equivalent.
/* convert a lowercase character to uppercase using a programmer-defined function */

#include <stdio.h>

char lower_to_upper(char c1) /* function definition */

{

char c2;

c2 = (c1 >= 'a' && c1 <= 'z') ? ("A' + ¢c1 - 'a') : c1;
return(c2);

180 FUNCTIONS [CHAP. 7

void main(void)

{
char lower, upper;
printf("Please enter a lowercase character: “);
scanf("%c"', &lower);
upper = lower_to_upper(lower);
printf(*\nThe uppercase equivalent is %c\n\n", upper);
}

Within this program, main contains only one call to the programmer-defined function lower_to_upper. The call is a
part of the assignment expression upper = lower_to_upper(lower).

The function call contains one actual argument, the char-type variable lower. Note that the corresponding formal
argument, ¢1, within the function definition is also a char-type variable.

When the function is accessed, the value of lower to be transferred to the function. This value is represented by c1
within the function. The value of the uppercase equivalent, c2, is then determined and returned to the calling portion of
the program, where it is assigned to the char-type variable upper.

The last two statements in main can be combined to read

printf(*\nThe uppercase equivalent is %c\n\n*, lower_to_upper(lower));

The call to lower_to_upper is now an actual argument for the library function printf. Also, note that the variable
upper is no longer required.

Finally, notice the manner in which the first line of main is written, i.e,, void main(void). This is permitted under
the ANSI standard, though some compilers do not accept the void return type. Hence, many authors (and many
programmers) write the first line of main as main(void), or simply main(). We will follow the latter designation
throughout the remainder of this book.

There may be several different calls to the same function from various places within a program. The
actual arguments may differ from one function call to another. Within each function call, however, the actual
arguments must correspond to the formal arguments in the function definition; i.e., the number of actual
arguments must be the same as the number of formal arguments, and each actual argument must be of the
same data type as its corresponding formal argument.

EXAMPLE 7.9 Largest of Three Integer Quantities The following program determines the largest of three integer
quantities. This program makes use of a function that determines the larger of two integer quantities. The function is
similar to that defined in Example 7.4, except that the present function returns the larger value to the calling program
rather than displaying it.

The overall strategy is to determine the larger of the first two quantities, and then compare this value with the third
quantity. The largest quantity is then displayed by the main part of the program.

/* determine the largest of three integer quantities */

#include <stdio.h>

int maximum(int x, int y) /* determine the larger of two integer quantities */

{

int z;

zZ= (x> y)?7x:y;
return(z);

CHAP. 7] FUNCTIONS 181

main()

{

int a, b, ¢, d;

/* read the integer quantities */
printf("\na = ");

scanf("%d", &a);

printf("\nb = ");

scanf("%d*, &b);

printf(“\nc = ");

scanf(“%d", &c);

/* calculate and display the maximum value */

d = maximum(a, b);
printf(“\n\nmaximum = %d", maximum(c, d));

}

The function maximum is accessed from two different places in main. In the first call to maximum the actual
arguments are the variables a and b, whereas the arguments are ¢ and d in the second call (d is a temporary variable
representing the maximum value of a and b).

Note the two statements in main that access maximum, i.e.,

d = maximum(a, b);
printf(*\n\nmaximum = %d*, maximum(c, d));

These two statements can be replaced by a single statement; e.g.,
printf("\n\nmaximum = %d", maximum(c, maximum(a, b))),;

In this statement we see that one of the calls to maximum is an argument for the other call. Thus the calls are embedded,
one within the other, and the intermediary variable, d, is not required. Such embedded function calls are permissible,
though their logic may be unclear. Hence, they should generally be avoided by beginning programmers.

7.4 FUNCTION PROTOTYPES

In the programs that we have examined earlier in this chapter, the programmer-defined function has always
preceded main. Thus, when these programs are compiled, the programmer-defined function will have been
defined before the first function access. However, many programmers prefer a “top-down” approach, in
which main appears ahead of the programmer-defined function definition. In such situations the function
access (within main) will precede the function definition. This can be confusing to the compiler, unless the
compiler is first alerted to the fact that the function being accessed will be defined later in the program. A
Junction prototype is used for this purpose.

Function prototypes are usually written at the beginning of a program, ahead of any programmer-defined
functions (including main). The general form of a function prototype is

data-type name(type ' arg 1, type 2 arg 2, . . ., typen argn),;

where data- type represents the data type of the item that is returned by the function, name represents the
function name, and type 7, type 2,..., type n represent the data types of the arguments arg 7, arg 2,
., arg n. Notice that a function prototype resembles the first line of a function definition (though a
function prototype ends with a semicolon).
The names of the arguments within the function prototype need not be declared elsewhere in the program,
since these are “dummy” argument names that are recognized only within the prototype. In fact, the argument
names can be omitted (though it is not a good idea to do so); however, the argument data types are essential.

182 FUNCTIONS [CHAP. 7

In practice, the argument names are usually included and are often the same as the names of the actual
arguments appearing in one of the function calls. The data types of the actual arguments must conform to the
data types of the arguments within the prototype.

Function prototypes are not mandatory in C. They are desirable, however, because they further facilitate
error checking between the calls to a function and the corresponding function definition.

EXAMPLE 7.10 Calculating Factorials Here is a complete program to calculate the factorial of a positive integer
quantity. The program utilizes the function factorial, defined in Example 7.5. Note that the function definition
precedes main, as in the earlier programming examples within this chapter.

/* calculate the factorial of an integer quantity */
#include <stdio.h>

long int factorial(int n)

/* calculate the factorial of n */

{
int i;
long int prod = 1;
if (n > 1)
for (1 = 2; 1 <= n; ++i)
prod *= i;
return(prod);
}
main()
{
int n;
/* read in the integer quantity */
printf(*\nn = *);
scanf(“%d", &n);
/* calculate and display the factorial */
printf(*\nn! = %ld*, factorial(n));
}

The programmer-defined function (factorial) makes use of an integer argument (n) and two local variables—an
ordinary integer (i) and a long integer (prod). Since the function returns a long integer, the type declaration long int
appears in the first line of the function definition.

Here is another version of the program, written top-down (i.e, with main appearing ahead of factorial). Notice
the presence of the function prototype at the beginning of the program. The function prototype indicates that a function
called factorial, which accepts an integer quantity and returns a long integer quantity, will be defined later in the
program.

/* calculate the factorial of an integer quantity */
#include <stdio.h>

long int factorial{int n); /* function prototype */

CHAP. 7] FUNCTIONS 183

main()

{

int n;
/* read in the integer quantity */

printf("\nn = "),
scanf("%d", &n);

/* calculate and display the factorial */
printf("\nn! = %ld", factorial(n));

}

long int factorial(int n)

/* calculate the factorial of n */

{
int i;
long int prod = 1;
if (n > 1)
for (1 = 2; 1 <= n; ++i)
prod *= i;
return(prod);
}

Function calls can span several levels within a program. That is, function A can call function B, which
can call function C, etc. Also, function A can call function C directly, and so on.

EXAMPLE 7.11 Simulation of a Game of Chance (Shooting Craps) Here is an interesting programming problem
that includes multiple function calls at several different levels. Both library functions and programmer-defined functions
are required.

Craps is a popular dice game in which you throw a pair of dice one or more times until you either win or lose. The
game can be simulated on a computer by generating random numbers rather than actually throwing the dice.

There are two ways to win in craps. You can throw the dice once and obtain a score of either 7 or 11; or you can
obtain a 4, 5, 6, 8, 9 or 10 on the first throw and then repeat the same score on a subsequent throw before obtaining a 7.
Conversely, there are two ways to lose. You can throw the dice once and obtain a 2, 3 or 12; or you can obtain a 4, 5, 6, 8,
9 or 10 on the first throw and then obtain a 7 on a subsequent throw before repeating your original score.

We will develop the game interactively, so that one throw of the dice will be simulated each time you press the Enter
key. A message will then appear indicating the outcome of each throw. At the end of each game, you will be asked
whether or not you want to continue to play.

Our program will require a random number generator that produces uniformly distributed integers between 1 and 6.
(By uniformly distributed we mean that any integer between 1 and 6 is just as likely to appear as any other integer.) Most
versions of C include a random number generator in their library routines. These random number generators typically
return a floating-point number that is uniformly distributed between 0 and 1, or an integer quantity that is uniformly
distributed between 0 and some very large integer value.

We will employ a random number generation routine called rand, which retums a uniformly distributed integer
between 0 and 2!5 - 1 (i.e., between 0 and 32,767). We then convert each random integer quantity to a floating-point
number, x, which varies from 0 to 0.99999- - - . To do so, we write

X = rand() / 32768.0

Note that the denominator is written as a floating-point constant. This forces the quotient, and hence x, to be a floating-
point quantity.

184 FUNCTIONS [CHAP. 7

The expression
(int) (6 * x)

will result in a truncated integer whose value will be uniformly distributed between 0 and 5. Thus, we obtain the desired
value simply by adding [; i.e.,

n=1+(int) (6 * x)
This value will represent the random outcome of rolling one die. If we repeat this process a second time and add the

results, we obtain the resuit of rolling two dice.
The following function utilizes the above strategy to simulate one throw of a pair of dice.

int throw(void) /* simulate one throw of a pair of dice */

{
float x1, x2; /* random floating-point numbers between 0 and 1 */
int n1, n2; /* random integers between 1 and 6 */
x1 = rand() / 32768.0;
x2 = rand() / 32768.0;
nt =1 + (int) (6 * x1); /* simulate first die */
n2 = 1 + (int) (6 * x2); /* simulate second die */
return(ni + n2); /* score is sum of two dice */
}

The function returns the result of each throw (an integer quantity whose value varies between 2 and 12). Note that this
final result will not be uniformly distributed, even though the individual values of n1 and n2 are,

Now let us define another function, called play, which can simulate one complete game of craps. Thus, the dice will
be thrown as many times as is necessary to establish either a win or a loss. This function will therefore access throw. The
complete rules of craps will also be built into this function.

In pseudocode, we can write the function play as

void play(void) /* simulate one complete game */

{

int scorei1, score2;

/* instruct the user to throw the dice */

/* initialize the random number generator */
scorel = throw();

switch (scorel) {

case 7:
case 1i:

/* display a message indicating a win on the first throw */

case 2:
case 3:
case 12:

/* display a message indicating a loss on the first throw */

CHAP. 7] FUNCTIONS 185

case 4
case 5
case 6:
case 8
case 9
case 1

/* instruct the user to throw the dice again */
score2 = throw();

} while (score2 = scorel && score2 |= 7);

if (score2 == scorel)
/* display a message indicating a win */
else

/* display a message indicating a loss */
}

return;

The main routine will control the execution of the game. This routine will consist of a while loop containing some
interactive input/output and a call to play. Thus, we can write the pseudocode for main as

main()

{

/* declarations */

/* initialize the random number generator */
/* generate a welcoming message */

while (/* player wants to continue */) {

play();

/* ask if player wants to continue */

}

/* generate a sign-off message */
}

The library function srand will be used to initialize the random number generator. This function requires a positive
integer, called a seed, which establishes the sequence of random numbers generated by rand. A different sequence will be
generated for each seed. For convenience, we can include a value for the seed as a symbolic constant within the program.
(If the program is executed repeatedly with the same seed, the same sequence of random numbers will be generated each
time. This is helpful when debugging the program.)

Here is the complete C program, written top-down.

/* simulation of a craps game */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

#define SEED 12345

186 FUNCTIONS [CHAP. 7

void play(void); /* function prototype */
int throw(void); /* function prototype */
main()

{

char answer = 'Y';

printf(“Welcome to the Game of CRAPS\n\n");
printf("To throw the dice, press Enter\n\n®);

srand(SEED); /* initialize the random number generator */
/* main loop */

while (toupper(answer) != 'N') {
play();
printf("\nDo you want to play again? (Y/N) *});
scanf(* %c", &answer);
printf(*\n");
}

printf(“Bye, have a nice day");

void play(void) /* simulate one complete game */

{
int scorei1, score2;
char dummy;
printf("\nPlease throw the dice . . .");

scanf("%c", &dummy);
printf(*\n");

scorel = throw();
printf("\n%2d", scorel);

switch (scoretl) {

case 7: /* win on first throw */
case 11:

printf(* - Congratulations! You WIN on the first throw\n");
break;

case 2: /* lose on first throw */
case 3:
case 12:

printf(* - Sorry, you LOSE on the first throw\n");
break;

case 4 /* additional throws are required */
case 5
case 6:
case 8
case 9

1

case

CHAP. 7] FUNCTIONS 187

do {
printf(* - Throw the dice again . . .");
scanf("%c", &dummy);
score2 = throw();
printf(*\n%2d", score2);
} while (score2 1= scorel && score2 != 7);

if (score2 == scorel)
printf(* - You WIN by matching your first score\n"});
else
printf(* - You LOSE by failing to match your first score\n");
break;
}
return;

int throw(void) /* simulate one throw of a pair of dice */

{
float x1, x2; /* random floating-point numbers between O and 1 */
int n1, n2; /* random integers between 1 and 6 */
x1 = rand() / 32768.0;
x2 = rand() / 32768.0;
nt =1 + (int) (6 * x1); /* simulate first die */
n2 =1 + (int) (6 * x2); /* simulate second die */
return{ni + n2); /* score is sum of two dice */
}

Notice that main calls srand and play. One argument is passed to srand (the value of the seed), but no arguments
are passed to play. Also, note that play calls throw from two different places, and throw calls rand from two different
places. There are no arguments passed from play to throw or from throw to rand. However, rand returns a random
integer to throw, and throw returns the value of an integer expression (the outcome of one throw of the dice) to play.
Notice that play does not return any information to main.

Within play, there are two references to the scant function, each of which enters a value for the variable dummy. It
should be understood that dummy is not actually used within the program. The scanf functions are present simply to halt
the program temporarilty, until the user presses the Enter key (to simulate a new throw of the dice).

This program is designed to run in an interactive environment, such as on a personal computer. A typical set of
output is shown below. The user’s responses are underlined for clarity.

Welcome to the Game of CRAPS

To throw the dice, press Enter (Enter)

Please throw the dice .
6 - Throw the dice again .
10 - Throw the dice again .

7 - You LOSE by failing to match your first score

188 FUNCTIONS [CHAP. 7

Do you want to play again? (Y/N) y

Please throw the dice .
7 - Congratulations! You WIN on the first throw

Do you want to play again? (Y/N) y

Please throw the dice .
11 - Congratulations! You WIN on the first throw

Do you want to play again? (Y/N) y

Please throw the dice .

8 - Throw the dice again .

5 - Throw the dice again .

7 - You LOSE by failing to match your first score

Do you want to play again? (Y/N) y

Please throw the dice .

6 - Throw the dice again .

4 - Throw the dice again .

6 - You WIN by matching your first score

Do you want to play again? (Y/N) y

Please throw the dice .
3 - Sorry, you LOSE on the first throw
Do you want to play again? (Y/N) n

Bye, have a nice day

7.5 PASSING ARGUMENTS TO A FUNCTION

When a single value is passed to a function via an actual argument, the value of the actual argument is copied
into the function. Therefore, the value of the corresponding formal argument can be altered within the
function, but the value of the actual argument within the calling routine will not change. This procedure for
passing the value of an argument to a function is known as passing by value.

CHAP. 7] FUNCTIONS 189

EXAMPLE 7.12 Here is a simple C program containing a function that alters the value of its argument.

#include <stdio.h>

void modify(int a); /* function prototype */
main()
{

int a = 2;

printf("\na = %d (from main, before calling the function)", a);
modify(a);
printf(*\n\na = %d (from main, after calling the function)', a);

}

void modify(int a)

{
a *= 3;
printf{*\n\na = %d (from the function, after being modified)", a);
return;

}

The original value of a (i.e., a = 2) is displayed when main begins execution. This value is then passed to the function
modify, where it is multiplied by 3 and the new value displayed. Note that it is the altered value of the formal argument
that is displayed within the function. Finally, the value of a within main (i.e., the actual argument) is again displayed,
after control is transferred back to main from modity.

When the program is executed, the following output is generated.

a =2 (from main, before calling the function)
a =6 (from the function, after being modified)
a =2 (from main, after calling the function)

These results show that a is rot altered within main, even though the corresponding value of a is changed within modify.

Passing an argument by value has advantages and disadvantages. On the plus side, it allows a single-
valued actual argument to be written as an expression rather than being restricted to a single variable.
Moreover, if the actual argument is expressed simply as a single variable, it protects the value of this variable
from alterations within the function. On the other hand, it does not allow information to be transferred back to
the calling portion of the program via arguments. Thus, passing by value is restricted to a one-way transfer of
information.

EXAMPLE 7.13 Calculating Depreciation Let us consider a variation of the depreciation program presented in
Example 6.26. The overall objective is to calculate depreciation as a function of time using any one of three different
commonly used methods, as before. Now, however, we will rewrite the program so that a separate function is used for
each method. This approach offers us a cleaner way to organize the program into its logical components. In addition, we
will move a block of repeated output instructions into a separate function, thus eliminating some redundant programming
from the original version of the program.

We will also expand the generality of the program somewhat, by permitting different sets of depreciation calculations
to be carried out on the same input data. Thus, at the end of each set of calculations the user will be asked if another set of
calculations is desired. Ifthe answer is yes, then the user will be asked whether or not to enter new data.

Here is the new version of the program, written top-down.

190 FUNCTIONS [CHAP. 7

/* calculate depreciation using one of three different methods */

#include <stdio.h>
#include <ctype.h>

void sl(float val, int n); /* funct prototype */
void ddb(float val, int n); /* funct prototype */
void syd(float val, int n); /* funct prototype */
void writeoutput(int year, float depreciation, float value); /* funct prototype */

main()

{
int n, choice = 0;
float val;
char answeri = 'Y', answer2

]
<

while (toupper(answeri) l= 'N') {

/* read input data */

it (toupper(answer2) l= 'N') {
printf(*\nOriginal value: ");
scanf ("%f", &val);
printf(°"Number of years: ");
scanf("%d", &n);
}
printf(“\nMethod: (1-SL 2-DDB 3-SYD) *);
scanf("%d", &choice);

switch (choice) {
case 1: /* straight-line method */

printf(*\nStraight-Line Method\n\n");
sl(val, n);
break;

case 2: /* double-declining-balance method */

printf(*®\nDouble-Declining-Balance Method\n\n");
ddb(val, n);
break;

case 3: /* sum-of-the-years'-digits method */
printf("\nSum-0f-The-Years\'-Digits Method\n\n");

syd(val, n);
}
printf(*\n\nAnother calculation? (Y/N) ");
scanf("%1s", &answeri);
it (toupper(answeri) |= 'N') {
printf('Enter a new set of data? (Y/N) ");
scanft ("%1s", 8&answer2);

}

printf(*\nGoodbye, have a nice day!\n");

CHAP. 7] FUNCTIONS 191

void sl(float val, int n) /* straight-line method */

{
Tloat deprec;

int year;

deprec = val/n;

for (year = 1; year <= n; ++year) {
val -= deprec;
writeoutput(year, deprec, val);

}
return;
}
void ddb(float val, int n) /* double-declining-balance method */
{
float deprec;
int year;
for (year = 1; year <= n; ++year) {
deprec = 2*val/n;
val -= deprec;
writeoutput(year, deprec, val);
}
return;
}
void syd(float val, int n) /* sum-of-the-years'-digits method */
{
float tag, deprec;
int year;
tag = val;
for (year = 1; year <= n; ++year) {
deprec = (n-year+i)*tag / (n*(n+1)/2);
val -= deprec;
writeoutput(year, deprec, val);
}
return;
}
void writeoutput(int year, float depreciation, float value) /* display output data */
{
printf("End of Year %2d", year);
printf(* Depreciation: %7.2f", depreciation);
printf(" Current Value: %8.2f\n", value);
return;
}

Notice that the switch statement is still employed, as in Example 6.26, though there are now only three choices
rather than four. (The fourth choice, which ended the computation in the previous version, is now handled through
interactive dialog at the end of each set of calculations.) A separate function is now provided for each type of calculation.
In particular, the straight-line calculations are carried out within function sl, the double-declining-balance calculations
within ddb, and the sum-of-the-years’-digits calculations within syd. Each of these functions includes the formal

192 FUNCTIONS [CHAP. 7

arguments val and n, which represent the original value of the item and its lifetime, respectively. Note that the value of
val is altered within each function, although the original value assigned to val remains unaltered within main. It is this
feature that allows repeated sets of calculations with the same input data.

The last function, writeoutput, causes the results of each set of calculations to be displayed on a year-by-year
basis. This function is accessed from sl, ddb and syd. In each call to writeoutput, the altered value of val is
transferred as an actual argument, along with the current year (year) and the current year’s depreciation (deprec). Note
that these quantities are called value, year and depreciation, respectively, within writeoutput.

A sample interactive session which makes use of this program is shown below.

Original value: 8000
Number of years: 10

Method: (1-SL 2-DDB 3-SYD) 1

Straight-Line Method

End of Year Depreciation: 800.00 Current Value: 7200.00
End of Year Depreciation: 800.00 Current Value: 6400.00
End of Year Depreciation: 800.00 Current Value: 5600.00
End of Year Depreciation: 800.00 Current Value: 4800.00

1
2
3
4
End of Year 5 Depreciation: 800.00 Current Value: 4000.00
End of Year 6 Depreciation: 800.00 Current value: 3200.00
End of Year 7 Depreciation: 800.00 Current Value: 2400.00
€nd of Year 8 Depreciation: 800.00 Current Value: 1600.00
End of Year 9 Depreciation: 800.00 Current Value: 800.00
End of Year 10 Depreciation: 800.00 Current Value: 0.00

Another calculation? (Y/N) y
Enter a new set of data? (Y/N) n
Method: (1-SL 2-DDB 3-SYD) 2
Double-Declining-Balance Method
End of Year

End of Year
End of Year

1 Depreciation: 1600.00 Current Value: 6400.00

2 Depreciation: 1280.00 Current Value: 5120.00

3 Depreciation: 1024.00 Current Value: 4096.00
End of Year 4 Depreciation: 819.20 Current Value: 3276.80
End of Year 5 Depreciation: 655.36 Current Value: 2621.44
End of Year 6 Depreciation: 524.29 Current Value: 2097.15
End of Year 7 Depreciation: 419.43 Current Value: 1677.72
End of Year 8 Depreciation: 335.54 Current vValue: 1342.18
End of Year 9 Depreciation: 268.44 Current Value: 1073.74
End of Year 10 Depreciation: 214.75 Current Value: 858.99

Another calculation? (Y/N) y
Enter a new set of data? (Y/N) n
Method: (1-SL 2-DDB 3-SYD) 3

Sum-0f-The-Years'-Digits Method

CHAP. 7] FUNCTIONS 193

Depreciation: 290.91 Current Value: 145.45
Depreciation: 145.45 Current Value: 0.00

End of Year
End of Year 1

End of Year 1 Depreciation: 1454.55 Current Value: 6545.45
End of Year 2 Depreciation: 1309.09 Current Value: 5236.36
End of Year 3 Depreciation: 1163.64 Current Value: 4072.73
End of Year 4 Depreciation: 1018.18 Current Value: 3054.55
End of Year 5 Depreciation: 872.73 Current Value: 2181.82
End of Year 6 Depreciation: 727.27 Current Value: 1454.55
End of Year 7 Depreciation: 5681.82 Current Value: 872.73
End of Year 8 Depreciation: 436.36 Current Value: 436.36

9

0

Another calculation? (Y/N) y
Enter a new set of data? (Y/N) y

Original value: 5000
Number of years: 4

Method: (1-SL 2-DDB 3-SYD)

(=Y

Straight-Line Method

End of Year 1 Depreciation: 1250.00 Current Value: 3750.00
End of Year 2 Depreciation: 1250.00 Current Value: 2500.00
End of Year 3 Depreciation: 1250.00 Current Value: 1250.00
End of Year 4 Depreciation: 1250.00 Current Value: 0.00

Another calculation? (Y/N) y
Enter a new set of data? (Y/N) n

Method: (1-SL 2-DDB 3-SYD) 2

Double-Declining-Balance Method

End of Year 1 Depreciation: 2500.00 Current Value: 2500.00
End of Year 2 Depreciation: 1250.00 Current Value: 1250.00
End of Year 3 Depreciation: 625.00 Current Value: 625.00
End of Year 4 Depreciation: 312.50 Current Value: 312.50

Another calculation? (Y/N) n
Goodbye, have a nice day!

Notice that two different sets of input data are processed. Depreciation is calculated for the first set using all three
methods, and for the second set using only the first two methods. Thus, it is not necessary to reenter the input data simply
to recalculate the depreciation using a different method.

Array arguments are passed differently than single-valued data items. If an array name is specified as an
actual argument, the individual array elements are not copied. Instead, the /ocation of the array (i.e., the
location of the first element) is passed to the function. If an element of the array is then accessed within the
function, the access will refer to the location of that array element relative to the location of the first element.

194 FUNCTIONS [CHAP. 7

Thus, any alteration to an array element within the function will carry over to the calling routine. We will
discuss this in greater detail in Chap. 9, when we formally consider arrays.

There are also other kinds of data structures that can be passed as arguments to a function. We will
discuss the transfer of such arguments in later chapters, as the additional data structures are introduced.

7.6 RECURSION

Recursion is a process by which a function calls itself repeatedly, until some specified condition has been
satisfied. The process is used for repetitive computations in which each action is stated in terms of a previous
result. Many iterative (i.e., repetitive) problems can be written in this form.

In order to solve a problem recursively, two conditions must be satisfied. First, the problem must be
written in a recursive form, and second, the problem statement must include a stopping condition. Suppose,
for example, we wish to calculate the factorial of a positive integer quantity. We would normally express this
problem as n! =1 x 2 x 3 x - - x n, where n is the specified positive integer (see Example 7.5). However, we
can also express this problem in another way, by writing n! = n x (n ~ 1)! This is a recursive statement of the
problem, in which the desired action (the calculation of n!) is expressed in terms of a previous result [the value
of (n — 1)!, which is assumed to be known]. Also, we know that 1! = 1 by definition. This last expression
provides a stopping condition for the recursion.

EXAMPLE 7.14 Calculating Factorials In Example 7.10 we saw two versions of a program that calculates the
factorial of a given input quantity, using a nonrecursive function to perform the actual calculations. Here is a program that
carries out this same calculation using recursion.

/* calculate the factorial of an integer quantity using recursion */

#include <stdio.h>

long int factorial(int n); /* function prototype */

main()

{
int n;
long int factorial(int n);

/* read in the integer guantity */

printf(*n = *});
scanf("%d", &n);

/* calculate and display the factorial */

printf(*n! = %ld\n*, factorial(n));

}
long int factorial(int n) /* calculate the factorial */
{
it (n <= 1)
return(1);
else
return(n * factorial(n - 1));
}

The main portion of the program simply reads the integer quantity n and then calls the long-integer recursive function
factorial. (Recall that we use long integers for this calculation because factorials are such large integer quantities, even

CHAP. 7] FUNCTIONS 195

for modest values of n.) The function factorial calls itself recursively, with an actual argument (n - 1) that decreases
in magnitude for each successive call. The recursive calls terminate when the value of the actual argument becomes equal

to 1.
Notice that the present form of factorial is simpler than the function presented in Example 7.10. The close

correspondence between this function and the original problem definition, in recursive terms, should be readily apparent.
In particular, note that the if - else statement includes a termination condition that becomes active when the value of n is
less than or equal to 1. (Note that the value of n will never be less than 1 unless an improper initial value is entered into

the computer.)
When the program is executed, the function factorial will be accessed repeatedly, once in main and (n — 1) times

within itself, though the person using the program will not be aware of this. Only the final answer will be displayed; for
example,

n=10
n! = 3628800

When a recursive program is executed, the recursive function calls are not executed immediately. Rather,
they are placed on a stack until the condition that terminates the recursion is encountered.” The function calls
are then executed in reverse order, as they are “popped” off the stack. Thus, when evaluating a factorial
recursively, the function calls will proceed in the following order.

n=nx{n-1n
n-D=(m-1) x(n-2)!
n-2)=n-2)x(n-3)

21=2x1!
The actual values will then be returned in the following reverse order.
1t=1

20=2x1'=2x1=2
31=3x21=3x2=6
4'=4x3!'=4x6=24

nl=nxn-1=---

This reversal in the order of execution is a characteristic of all functions that are executed recursively.

If a recursive function contains local variables, a different set of local variables will be created during
each call. The names of the local variables will, of course, always be the same, as declared within the
function. However, the variables will represent a different set of values each time the function is executed.
Each set of values will be stored on the stack, so that they will be available as the recursive process
“unwinds,” i.e., as the various function calls are “popped” off the stack and executed.

EXAMPLE 7.15 Printing Backwards The following program reads in a line of text on a character-by-character
basis, and then displays the characters in reverse order. The program utilizes recursion to carry out the reversal of the
characters.

* A stack is a last-in, first-out data structure in which successive data items are “pushed down” upon preceding data items. The data
itemns are later removed (i.e., they are “popped™) from the stack in reverse order, as indicated by the last-in, first-out designation.

196 FUNCTIONS [CHAP. 7

/* read a line of text and write it out backwards, using recursion */
#include <stdio.h>
#define EOLN '\n’

void reverse(void); /* function prototype */

main()

{

printf(“Please enter a line of text below\n");
reverse();

void reverse(void)

/* read a line of characters and write it out backwards */

{
char ¢;
if ((c = getchar()) != EOLN) reverse();
putchar(c);
return;
}

The main portion of this program simply displays a prompt and then calls the function reverse, thus initiating the
recursion. The recursive function reverse then proceeds to read single characters until an end-of-line designation (\n) is
encountered. Each function call causes a new character (a new value for ¢) to be pushed onto the stack. Once the end of
line is encountered, the successive characters are popped off the stack and displayed on a last-in, first-out basis. Thus, the
characters are displayed in reverse order.

Suppose the program is executed with the following line of input:

Now is the time for all good men to come to the aid of their country!
Then the corresponding output will be

lyrtnuoc rieht fo dia eht ot emoc ot nem doog lla rof emit eht si woN

Sometimes a complicated repetitive process can be programmed very concisely using recursion, though
the logic may be tricky. The following example provides a well-known illustration.

EXAMPLE 7.16 The Towers of Hanoi The Towers of Hanoi is a well-known children’s game, played with three
poles and a number of different-sized disks. Each disk has a hole in the center, allowing it to be stacked around any of the
poles. Initially, the disks are stacked on the leftmost pole in the order of decreasing size, i.e., the largest on the bottom and
the smallest on the top, as illustrated in Fig. 7.1.

The object of the game is to transfer the disks from the leftmost pole to the rightmost pole, without ever placing a
larger disk on top of a smaller disk. Only one disk may be moved at a time, and each disk must always be placed around
one of the poles.

The general strategy is to consider one of the poles to be the origin, and another to be the destination. The third pole
will be used for intermediate storage, thus allowing the disks to be moved without placing a larger disk over a smaller one.
Assume there are n disks, numbered from smallest to largest, as in Fig. 7.1. If the disks are initially stacked on the left
pole, the problem of moving all » disks to the right pole can be stated in the following recursive manner.

1. Move the top n — 1 disks from the left pole to the center pole.

CHAP. 7] FUNCTIONS 197

2. Move the nth disk (the largest disk) to the right pole.
3. Move the n — 1 disks on the center pole to the right pole.

The problem can be solved in this manner for any value of # greater than 0 (n = 0 reptesents a stopping condition).

Left Center Right

Fig. 7.1

In order to program this game we first label the poles so that the left pole is represented as L, the center pole as C and
the right pole as R. We then construct a recursive function called transfer that will transfer n disks from one pole to
another. Let us refer to the individual poles with the char-type variables from, to and temp for the origin, destination,
and temporary storage, respectively. Thus, if we assign the character L to from, R to to and C to temp, we will in effect
be specifying the movement of » disks from the leftmost pole to the rightmost pole, using the center pole for intermediate
storage.

With this notation, the function will have the following skeletal structure.

void transfer(int n, char from, char to, char temp)

/* n = number of disks
from = origin
to = destination
temp = temporary storage */
{
if (n>0) {
/* move n-1 disks from their origin to the temporary pole */
/* move the nth disk from its origin to its destination */
/* move the n-1 disks from the temporary pole to their destination */
}
}

The transfer of the n — 1 disks can be accomplished by a recursive call to transter. Thus, we can write
transfer{n-1, from, temp, to);

for the first transfer, and

198 FUNCTIONS [{CHAP. 7

transfer(n-1, temp, to, from);
for the second. (Note the order of the arguments in each call.) The movement of the nth disk from the origin to the

destination simply requires writing out the current values of from and to. Hence, the complete function can be written as
follows.

void transfer(int n, char from, char to, char temp)

/* transfer n disks from one pole to another */

/*n = number of disks
from = origin
to = destipation
temp = temporary storage */
{

it (n > 0) {
/* move n-1 disks from origin to temporary */
transfer(n-1, from, temp, to);

/* move nth disk from origin to destination */
printf("Move disk %d from %c to %c\n*, n, from, to);

/* move n-1 disks from temporary to destination */
transfer(n-1, temp, to, from);

}

return;

It is now a simple matter to add the main portion of the program, which merely reads in a value for » and then
initiates the computation by calling transfer. In this first function call, the actual parameters will be specified as
character constants, i.e.,

transfer(n, 'L', 'R', 'C');

This function call specifies the transfer of all » disks from the leftmost pole (the origin) to the rightmost pole (the
destination), using the center pole for intermediate storage.
Here is the complete program.

/* the TOWERS OF HANOI - solved using recursion */
#include <stdio.h>

void transfer(int n, char from, char to, char temp); /* function prototype */

main()
{
int n;
printf("Welcome to the TOWERS OF HANOI\n\n"};
printf("How many disks? ");
scanf("%d", &n);
printf(*\n");
transfer(n,'L','R','C");

CHAP. 7]

FUNCTIONS 199

void transfer(int n, char from, char to, char temp)

/* transfer n disks from one pole to another */

/*n = number of disks
from = origin
to = destination
temp = temporary storage */
{
if (n > 0)
transfer(n-1, from, temp, to);
transfer(n-1, temp, to, from);
}
return;
}

/* move n-1 disks from origin to temporary */

/* move nth disk from origin to destination */
printf("Move disk %d from %c to %c\n", n, from, to);

/* move n-1 disks from temporary to destination */

It should be understood that the function transfer receives a different set of values for its arguments each time the
function is called. These sets of values will be pushed onto the stack independently of one another, and then popped from
the stack at the proper time during the execution of the program. It is this ability to store and retrieve these independent

sets of values that allows the recursion to work.

When the program is executed for the case where n = 3, the following output is obtained.

Welcome to the TOWERS OF HANOI

How many disks? 3

Move
Move
Move
Move
Move
Move
Move

disk
disk
disk
disk
disk
disk
disk

1
2
1
3
1
2
1

from
from
from
from
from
from
from

rooOrIr-r

to
to
to
to
to
to
to

OO0 0O0>

You should study these moves carefully to verify that the solution is indeed correct. The logic is very tricky, despite

the apparent simplicity of the program.

We will see another programming example that utilizes recursion in Chap. 11, when we discuss linked

lists.

The use of recursion is not necessarily the best way to approach a problem, even though the problem
definition may be recursive in nature. A nonrecursive implementation may be more efficient, in terms of
memory utilization and execution speed. Thus, the use of recursion may involve a tradeoff between simplicity
and performance. Each problem should therefore be judged on its own individual merits.

200 FUNCTIONS [CHAP. 7

Review Questions

7.1 What is a function? Are functions required when writing a C program?

7.2 State three advantages to the use of functions.

7.3 What is meant by a function call? From what parts of a program can a functjon be called?

7.4 What are arguments? What is their purpose? What other term is sometimes used for an argument?

7.5 What is the purpose of the return statement?

7.6 What are the two principal components of a function definition?

7.7 How is the first line of a function definition written? What is the purpose of each item, or group of items?

7.8 What are formal arguments? What are actual arguments? What is the relationship between formal arguments and
actual arguments?

7.9 Describe some alternate terms that are used in place of formal argument and actual argument.

7.10 Can the names of the formal arguments within a function coincide with the names of other variables defined
outside of the function? Explain.

7.11 Can the names of the formal arguments within a function coincide with the names of other variables defined
within the function? Explain, and compare your answer with the answer to the last question.

7.12 Summarize the rules governing the use of the return statement. Can multiple expressions be included in a
return statement? Can multiple return statements be included in a function?

7.13 What relationship must exist between the data type appearing at the beginning of the the first line of the function
definition and the value returned by the return statement?

7.14 Why might a return statement be included in a function that does not return any value?
7.15 What is the purpose of the keyword void? Where is this keyword used?

7.16 Summarize the rules that apply to a function call. What relationships must be maintained between the actual
arguments and the corresponding formal arguments in the function definition? Are the actual arguments subject to
the same restrictions as the formal arguments?

7.17 Can a function be called from more than one place within a program?

7.18 What are function prototypes? What is their purpose? Where within a program are function prototypes normally
placed?

7.19 Summarize the rules associated with function prototypes. What is the purpose of each item or group of items?

7.20 How are argument data types specified in a function prototype? What is the value of including argument data
types in a function prototype?

7.21 When a function is accessed, must the names of the actual arguments agree with the names of the arguments in the
corresponding function prototype?

7.22 Suppose function F1 calls function F2 within a C program. Does the order of the function definitions make any
difference? Explain.

7.23 Describe the manner in which an actual argument passes information to a function. What name is associated with
this process? What are the advantages and disadvantages to passing arguments in this manner?

7.24 What are differences between passing an array to a function and passing a single-valued data item to a function?

7.25 Suppose an array is passed to a function as an argument. If the value of an array element is altered within the
function, will this change be recognized within the calling portion of the program?

7.26 What is recursion? What advantage is there in its use?
7.27 Explain why some problems can be solved either with or without recursion.
7.28 What is a stack? In what order is information added to and removed from a stack?

7.29 Explain what happens when a program containing recursive function calls is executed, in terms of information
being added to and removed from the stack.

CHAP. 7] FUNCTIONS 201

7.30

7.31

7.32

7.33

7.34

7.35

7.36

When a program containing recursive function calls is executed, how are the local variables within the recursive
function interpreted?

If a repetitive process is programmed recursively, will the resulting program necessarily be more efficient than a
nonrecursive version?

Problems

Explain the meaning of each of the following function prototypes.

(@) int f(int a);

(b) double f(double a, int b);

(c) void f(long a, short b, unsigned c);
(d) char f(void);

(¢) unsigned f(unsigned a, unsigned b);

Each of the following is the first line of a function definition. Explain the meaning of each.

(a) float f(float a, float b) (c) void f(int a)
() long f(long a) (d) char f(void)

Write an appropriate function call (function access) for each of the following functions.

(@) float formula(float x)) void display(int a, int b)
{ {
float y; int c;
y=3*x-1; c =sqrt(a *a + b * b);
return(y); printf(*c = %i\n", c);
} }

Write the first line of the function definition, including the formal argument declarations, for each of the situations
described below.

(a) A function called sample generates and returns an integer quantity.

(b) A function called root accepts two integer arguments and returns a floating-point result.
(c) A function called convert accepts a character and returns another character.

(d) A function called transfer accepts a long integer and returns a character.

(e) A function called inverse accepts a character and returns a long integer.

)] A function called process accepts an integer and two floating-point quantities (in that order), and returns a
double-precision quantity.

(g) A function called value accepts two double-precision quantities and a short-integer quantity (in that
order). The input quantities are processed to yield a double-precision value which is displayed as a final
result.

Write appropriate function prototypes for each of the skeletal outlines shown below.

(@) main()

{

int a, b, ¢;

¢ = functi(a, b);

202

)

(©

(@

FUNCTIONS

int functi(int x, int y)

{
int z;
zZ=. . .3
return(z);
}
main()
{
double a, b, c;
¢ = functi(a, b);
}

double functi(double x, double y)
{

double z;
zZ=. . .
return(z);
}
main()
{
int a;
ftloat b;
long int c;
¢ = functi(a, b);
}

long int functi(int x, float y)
{

long int z;
zZ=. ..
return(z);

}

main()

{

double a, b, ¢, d;

[¢]
[}

functi(a, b);

Q
]

funct2(a + b, a + c);

[CHAP. 7

CHAP. 7] FUNCTIONS

737

double functi(double x, double y)

{
double z;
z = 10 * funct2(x, vy);
return(z);
}
double funct2(double x, double y)
{
double z;
zZ= ...
return(z);
}

Describe the output generated by each of the following programs.

(a) #include <stdio.h>

int funct(int count);

main()

{

int a, count;

for (count = 1; count <= 5; ++count)
a = functi(count);
printf(*'sd ', a);

}
}
int functt(int x)
{
int y;
y = X * X;
return(y);
}

(6) Show how the preceding program can be written more concisely.

(c) #include <stdio.h>

int functi(int n);

main()
{
int n = 10;

printf("%d", functi(n));

int functi(int n)

{
if (n > 0) return(n + functi(n - 1));

203

204

7.38

1.39

7.40

7.41

FUNCTIONS [CHAP. 7
(d) #include <stdio.h>

int functi(int n);
main()
{

int n = 10;

printf("%d", fTuncti(n));
}
int functi(int n)
{

if (n > 0) return(n + functi(n - 2));
}

Express each of the following algebraic formulas in a recursive form.

(@ y=@+x+ - +x)
(b) y=1-x+x22-56+x%24 +- -+ (=1Yx"n!

& p=U1*HL* *H

Programming Problems

Write a function that will calculate and display the real roots of the quadratic equation
axZ+bx+c=0

using the quadratic formula

_ -b+yb? - dac

2a

X

Assume that g, b and c are floating-point arguments whose values are given, and that x; and x, are floating-point
variables. Also, assume that 52 > 4*a*c, so that the calculated roots will always be real.

Write a complete C program that will calculate the real roots of the quadratic equation
a2 +bx+c=0

using the quadratic formula, as described in the previous problem. Read the coefficients @, b and ¢ in the main
portion of the program. Then access the function written for the preceding problem in order to obtain the desired
solution. Finally, display the values of the coefficients, followed by the calculated values of x; and x,. Be sure
that all of the output is clearly labeled.

Test the program using the following data:

—_ W NR
w W I
— O = 0

Modify the function written for Prob. 7.39 so that ail roots of the quadratic equation
ax2+bx+c=0

will be calculated, given the values of g, b and c. Note that the roots will be repeated (i.e., there will only be one
real root) if b2 = 4*a*c. Also, the roots will be complex if b2 < 4*a*c. In this case, the real part of each root will
be determined as

CHAP. 7] FUNCTIONS 205

7.42

7.43

7.44

7.45

-bi(2*a)

and the imaginary parts will be calculated as

i(\l dac - b2 ' i

where / represents a,/—_l
Modify the C program written for Prob. 7.40 so that a/l roots of the quadratic equation
ax2+bx+c=0

will be calculated, using the function written for Prob. 7.41. Be sure that all of the output is clearly labeled. Test
the program using the following data:

a b <
2 6 I
3 3 0
1 3 1
0 12 -3
3 6 3
2 -4 3

Write a function that will allow a floating-point number to be raised to an integer power. In other words, we wish
to evaluate the formula

y=x"
where y and x are floating-point variables and » is an integer variable.
Write a complete C program that will read in numerical values for x and n, evaluate the formula
y=x"
using the function written for Prob. 7.43, and then display the calculated result. Test the program using the
following data:

X L X n
2 3 1.5 3
2 12 1.5 10
2 -5 1.5 -5
-3 3 0.2 3
-3 7 0.2 5
-3 -5 0.2 -5

Expand the function written for Prob. 7.43 so that positive values of x can be raised to any power, integer or

floating-point. (Hint: Use the formula
y=x"=e(" Inx)
Remember to include a test for inappropriate values of x.)

Include this function in the program written for Prob. 7.44. Test the program using the data given in Prob.
7.44, and the following additional data.

x n x n
2 0.2 1.5 0.2
2 08 15 -08
-3 0.2 02 0.2
-3 -08 02 -08

0.2 0.0

206

7.46

747

7.48

7.49

FUNCTIONS [CHAP. 7

Modify the program for calculating the solution of an algebraic equation, given in Example 6.22, so that each
iteration is carried out within a separate function. Compile and execute the program to be sure that it runs
correctly.

Modify the program for averaging a list of numbers, given in Example 6.17, so that it makes use of a function to
read in the numbers and return their sum. Test the program using the following 10 numbers:

27.5 87.0
13.4 399
53.8 47.7
29.2 8.1
74.5 63.2

Modify the program for carrying out compound interest calculations given in Example 5.2 so that the actual
calculations are carried out in a programmer-defined function. Write the function so that the values of P, r and n
are entered as arguments, and the calculated value of F is returned. Test the program using the following data.

Jid r n
1000 6 20
1000 6.25 20

333.33 8.75 20
333.33 8.75 225

For each of the following problems, write a complete C program that includes a recursive function.

(@) The Legendre polynomials can be calculated by means of the formulas Py =1, P =x,
P,={2n-V)/n)xP, -(n~1)/n]P, 5

where n =2, 3, 4, . . . and x is any floating-point number between —1 and 1. (Note that the Legendre
polynomials are floating-point quantities.)
Generate the first n Legendre polynomials. Let the values of n and x be input parameters.
() Determine the cumulative sum of n floating-point numbers [see Prob. 7.38(a)]. Read a new number into
the computer during each call to the recursive function.
(c) Evaluate the first n terms in the series specified in Prob. 7.38(4). Enter n as an input parameter.

(d) Determine the cumulative product of n floating-point numbers [see Prob. 7.38(c)]. Read a new number into
the computer during each call to the recursive function.

Additional programming problems involving the use of functions can be found at the end of Chap. 8.

Chapter 8

Program Structure

This chapter is concerned with the structure of programs consisting of more than one function. We will first
consider the distinction between “local” variables that are recognized only within a single function, and
“global” variables that are recognized in two or more functions. We will see how global variables are defined
and utilized in this chapter.

We will also consider the issue of static vs. dynamic retention of information by a local variable. That is,
a local variable normally does not retain its value once control has been transferred out of its defining
function. In some circumstances, however, it may be desirable to have certain local variables retain their
values, so that the function can be reentered at a later time and the computation resumed.

And finally, it may be desirable to develop a large, multifunction program in terms of several independent
files, with a small number of functions (perhaps only one) defined within each file. In such programs the
individual functions can be defined and accessed locally within a single file, or globally within multiple files.
This is similar to the definition and use of local vs. global variables in a multifunction, single-file program.

8.1 STORAGE CLASSES

We have already mentioned that there are two different ways to characterize variables: by data rype, and by
storage class (see Sec. 2.6). Data type refers to the type of information represented by a variable, e.g., integer
number, floating-point number, character, etc. Storage class refers to the permanence of a variable, and its
scope within the program, i.e., the portion of the program over which the variable is recognized.

There are four different storage-class specifications in C: automatic, external, static and register. They
are identified by the keywords auto, extern, static, and register, respectively. We will discuss the
automatic, external and static storage classes within this chapter. The register storage class will be discussed
in Sec. 13.1.

The storage class associated with a variable can sometimes be established simply by the location of the
variable declaration within the program. In other situations, however, the keyword that specifies a particular
storage class must be placed at the beginning of the variable declaration.

EXAMPLE 8.1 Shown below are several typical variable declarations that include the specification of a storage class.
auto int a, b, c;
extern float roott, root2;
static int count = 0;
extern char star;

The first declaration states that a, b and ¢ are automatic integer variables, and the second declaration establishes roott
and root2 as external floating-point variables. The third declaration states that count is a static integer variable whose
initial value is 0, and the last declaration establishes star as an external character-type variable.

The exact procedure for establishing a storage class for a variable depends upon the particular storage
class, and the manner in which the program is organized (i.e., single file vs. multiple file). We will consider
these rules in the next few sections of this chapter.

207

208 PROGRAM STRUCTURE [CHAP. 8

8.2 AUTOMATIC VARIABLES

Automatic variables are always declared within a function and are local to the function in which they are
declared; that is, their scope is confined to that function. Automatic variables defined in different functions
will therefore be independent of one another, even though they may have the same name.

Any variable declared within a function is interpreted as an automatic variable unless a different storage-
class specification is shown within the declaration. This includes formal argument declarations. All of the
variables in the programming examples encountered earlier in this book have been automatic variables.

Since the location of the variable declarations within the program determines the automatic storage class,
the keyword auto is not required at the beginning of each variable declaration. There is no harm in including
an auto specification within a declaration, though this is normally not done.

EXAMPLE 8.2 Calculating Factorials Consider once again the program for calculating factorials, originally shown
in Example 7.10. Within main, n is an automatic variable. Within factorial, i and prod, as well as the formal
argument n, are automatic variables.

The storage-class designation auto could have been included explicitly in the variable declarations if we had wished.
Thus, the program could have been written as follows.

#/* calculate the factorial of an integer quantity */

include <stdio.h>

long int factorial(int n);

main()

{

auto int n;
/* read in the integer quantity */

printf("\nn = ");
scanf("%d", &n),

/* calculate and display the factorial */

printf("\nn! = %ld*, factorial(n));

}
long int factorial(auto int n) /* calculate the factorial */
{

auto int i;

auto long int prod = 1;

if (n > 1)

for (1 = 2; 1 <= n; ++1)
prod *= i;

return(prod);

}

Either method is acceptable. As a rule, however, the auto designation is not included in variable or formal argument
declarations, since this is the default storage class. Thus, the program shown in Example 7.10 represents a more common
programming style.

Automatic variables can be assigned initial values by including appropriate expressions within the
variable declarations, as in the above example, or by explicit assignment expressions elsewhere in the

CHAP. 8] PROGRAM STRUCTURE 209

function. Such values will be reassigned each time the function is reentered. If an automatic variable is not
initialized in some manner, however, its initial value will be unpredictable, and probably unintelligible.

An automatic variable does not retain its value once control is transferred out of its defining function.
Therefore, any value assigned to an automatic variable within a function will be lost once the function is
exited. If the program logic requires that an automatic variable be assigned a particular value each time the
function is executed, that value will have to be reset whenever the function is reentered (i.e., whenever the
function is accessed).

EXAMPLE 8.3 Average Length of Several Lines of Text Let us now write a C program that will read several lines
of text and determine the average number of characters (including punctuation and blank spaces) in each line. We will
structure the program in such a manner that it continues to read additional lines of text until an empty line (i.e., a line
whose first character is \n) is encountered.

We will utilize a function (1inecount) that reads a single line of text and counts the number of characters, excluding
the newline character (\n) that signifies the end of the line. The calling routine (main) will maintain a cumulative sum, as
well as a running total of the number of lines that have been read. The function will be called repeatedly (thus reading a
new line each time), until an empty line is encountered. The program will then divide the cumulative number of
characters by the total number of lines to obtain an average.

Here is the entire program.

/* read several lines of text and determine the average number of characters per line */
#include <stdio.h>

int linecount(void);

main()
{
int n; /* number of chars in given line */
int count = 0; /* number of lines */
int sum = 0; /* total number of characters */
float avg; /* average number of chars per line */

printf("Enter the text below\n*");
/* read a line of text and update the cumulative counters */

while ((n = linecount()) > 0) {
sum += n;
++count;

}

avg = (Tfloat) sum / count;
printf("\nAverage number of characters per line: %5.2f", avg);

int linecount(void)
/* read a line of text and count the number of characters */

{
char line[80];
int count = 0;

while ((line[count] = getchar()) I= '\n')
++count;
return (count);

210 PROGRAM STRUCTURE {CHAP. 8

We see that main contains four automatic variables: n, count, sum and avg, whereas linecount contains two:
line and count. (Notice that Line is an 80-element character array, representing the contents of one line of text.) Three
of these automatic variables are assigned initial values of zero.

Also, note that count has different meanings within each function. Within linecount, count represents the
number of characters in a single line, whereas within main, count represents the total number of lines that have been read.
Moreover, count is reset to zero within 1inecount whenever the function is accessed. This does not affect the value of
count within main, since the variables are independent of one another. It would have been clearer if we had named these
variables differently, e.g., count and lines, or perhaps chars and lines. We have used the same name for both
variables to illustrate the independence of automatic variables within different functions.)

A sample interactive session, resulting from execution of this program, is shown below. As usual, the user’s
responses are underlined.

Enter the text below

to come to the aid of their country.
Average number of characters per line: 34.00

The scope of an automatic variable can be smaller than an entire function if we wish. In fact, automatic
variables can be declared within a single compound statement. With small, simple programs there is usually
no advantage in doing this, but it may be desirable in larger programs.

8.3 EXTERNAL (GLOBAL) VARIABLES

External variables, in contrast to automatic variables, are not confined to single functions. Their scope
extends from the point of definition through the remainder of the program. Hence, they usually span two or
more functions, and often an entire program. They are often referred to as global variables.

Since external variables are recognized globally, they can be accessed from any function that falls within
their scope. They retain their assigned values within this scope. Therefore an external variable can be
assigned a value within one function, and this value can be used (by accessing the external variable) within
another function.

The use of external variables provides a convenient mechanism for transferring information back and
forth between functions. In particular, we can transfer information into a function without using arguments.
This is especially convenient when a function requires numerous input data items. Moreover, we now have a
way to transfer multiple data items out of a function, since the return statement can return only one data
item. (We will see another way to transfer information back and forth between functions in Chap. 10, where
we discuss pointers.)

When working with external variables, we must distinguish between external variable definitions and
external variable declarations. An external variable definition is written in the same manner as an ordinary
variable declaration. It must appear outside of, and usually before, the functions that access the external
variables. An external variable definition will automatically allocate the required storage space for the
external variables within the computer’s memory. The assignment of initial values can be included within an
external variable definition if desired (more about this later).

The storage-class specifier extern is not required in an external variable definition, since the external
variables will be identified by the location of their definition within the program. In fact, many C compilers
forbid the use of extern within an external variable definition. We will follow this convention within this
book.

If a function requires an external variable that has been defined earlier in the program, then the function
may access the external variable freely, without any special declaration within the function. (Remember,
however, that any alteration to the value an external variable within a function will be recognized within the
entire scope of the external variable.) On the other hand, if the function definition precedes the external
variable definition, then the function must include a declaration for that external variable. The function

CHAP. 8] PROGRAM STRUCTURE 211

definitions within a large program often include external variable declarations, whether they are needed or not,
as a matter of good programming practice.

An external variable declaration must begin with the storage-class specifier extern. The name of the
external variable and its data type must agree with the corresponding external variable definition that appears
outside of the function. Storage space for external variables will nor be allocated as a result of an external
variable declaration. Moreover, an external variable declaration cannor include the assignment of initial
values. These distinctions between an external variable definition and an external variable declaration are

very important.

EXAMPLE 8.4 Search for a Maximum Suppose we wish to find the particular value of x that causes the function
y=xcos (x)

to be maximized within the interval bounded by x = 0 on the left and x = © on the right. We will require that the
maximizing value of x be known very accurately. We will also require that the search scheme be relatively efficient in the
sense that the function y = x cos (x) should be evaluated as few times as possible.

One obvious way to solve this problem would be to generate a large number of closely spaced trial functions (that is,
evaluate the function at x = 0, x = 0.0001, x = 0.0002, . . ., x = 3.1415, and x = 3.1416) and determine the largest of these
by visual inspection. This would not be very efficient, however, and it would require human intervention to obtain the
final result. Instead let us use the following elimination scheme, which is a highly efficient computational procedure for all
functions that have only one maximum (i.e., only one “peak”) within the search interval.

The computation will be carried out as follows. We begin with two search points at the center of the search interval,
located a very small distance from each other, as shown in Fig. 8.1.

The following notation is used.

a = left end of the search interval
x1 = left-hand interior search point

xr = right-hand interior search point
b = right end of the search interval
sep = distance between xI and xr.

If a, b and sep are known, then the interior points can be calculated as
x1 =a+ .5* (b - a - sep)
xr=a+ .5* (b-a+ sep) = xl + sep

Let us evaluate the function y = x cos(x) at x1 and at xr. We will call these values yl and yr, respectively.
Suppose yl turns out to be greater than yr. Then the maximum will lie somewhere between a and xr. Hence we retain
only that portion of the search interval which ranges from x = atox = xr. We will now refer to the old point xr as b,
since it is now the right end of the new search interval, and generate two new search points, x1 and xr. These points will
be located at the center of the new search interval, a distance sep apart, as shown in Fig. 8.2.

On the other hand, suppose now that in our original search interval the value of yr turned out to be greater than y1.
This would indicate that our new search interval should lie between x1 and b. Hence we rename the point which was
originally called x1 to be a and we generate two new search points, x1 and xr, at the center of the new search interval, as
shown in Fig. 8.3.

We continue to generate a new pair of search points at the center of each new interval, compare the respective values
of y, and eliminate a portion of the search interval until the new search interval becomes smaller than 3 * sep. Once this
happens we can no longer distinguish the interior points from the boundaries. Hence the search is ended.

Each time we make a comparison between yl and yr, we eliminate that portion of the search interval that contains
the smaller value of y. If both interior values of y should happen to be identical (which can happen, though it is unusual),
then the search procedure stops, and the maximum is assumed to occur at the center of the last two interior points.

Once the search has ended, either because the search interval has become sufficiently small or because the two
interior points yield identical values of y, we can calculate the approximate location of the maximum as

xmax = 0.5 * (x1 + xr)

The corresponding maximum value of the function can then be obtained as xmax cos(xmax).

212 PROGRAM STRUCTURE

o

! T
a xl xr

Fig. 8.1

(formerly xr)

b

| 1
I T 1
a x1l xr
(formerly x1)
Fig. 8.3

—

[CHAP. 8

Let us consider a program outline for the general case where a and b are input quantities but sep has a fixed value of

0.0001.
I. Assignavalue of sep = 0.0001.

2. Read in the values of a and b.

Repeat the following until either y1 becomes equal to yr (the desired maximum will be at the midpoint), or the

most recent value of (b — a) becomes less than or equal to (3 * sep):
(a) Generate the two interior points, x1 and xr.

() Calculate the corresponding values of y1 and yr, and determine which is larger.

(¢) Reduce the search interval, by eliminating that portion that does not contain the larger value of y.

4. Evaluate xmax and ymax.

5. Display the values of xmax and ymax, and stop.

To translate this outline into a program, we first create a programmer-defined function to evaluate the mathematical

functiony = x cos(x). Let us call this function curve. This function can easily be written as follows.

/* evaluate the function y = x * cos(x) */
double curve(double x)

{

return (x * cos(x));

Note that cos(x) is a call to a C library function.

CHAP. 8] PROGRAM STRUCTURE 213

Now consider step 3 in the above outline, which carries out the interval reduction. This step can also be programmed
as a function, which we will call reduce. Notice, however, that the values represented by the variablesa, b, x1, xr,
y1 and yr, which change through the course of the computation, must be transferred back and forth between this function
and main. Therefore, let these variables be external variables whose scope includes both reduce and main.

Function reduce can be written as

/* interval reduction routine */

void reduce(void)
{
x1
Xr
yl
yr
if (yl > yr) { /* retain left interval */
b = xr;
return;

a+0.5* (b-a - CNST);
x1 + CNST;
curve(xl);
curve(xr);

}
if (yl < yr) /* retain right interval */

a = xl;
return;

}

Notice that the parameter that we have referred to earlier as sep is now represented as the character constant CNST. Also,
notice that this function does not include any formal arguments, and it does not return anything via the return statement.
All of the information transfers involve external variables.

It is now quite simple to write the main portion of the program, which calls the two functions defined above. Here is

the entire program.
/* find the maximum of a function within a specified interval */

#include <stdio.h>
#include <math.h>

#define CNST 0.0001

double a, b, xl1, yl, xr, yr; /* global variables */
void reduce(void); /* function prototype */
double curve(double x1); /* function prototype */
main()

{

double xmax, ymax;
/* read input data (interval end points) */

printf(*\na = *);
scanf ("%1f", &a);
printf(*b = *);

scanf("s1f", &b);

/* interval reduction loop */

do
reduce();
while ((yl != yr) & ((b - a) > 3 * CNST));

214 PROGRAM STRUCTURE [CHAP. 8

/* calculate xmax and ymax, and display the results */

xmax 0.5 * (X1 + xr);
ymax curve(xmax);
printf(“\nxmax = %B8.61f ymax = %8.61f", xmax, ymax);

/* interval reduction routine */

vold reduce(void)

{
x1

xr
yl
yr

a+ 0.5* (b-a - CNST);
x1 + CNST;
curve(xl);
curve(xr);

if (yl > yr) { /* retain left interval */
b = xr;
return;

}

if (yl < yr) /* retain right interval */
a = xl;

return;

/* evaluate the function y = x * cos(x) */

double curve(double x)

{

return (x * cos(x));

The variablesa, b, x1, yl, xr and yr are defined as external variables whose scope includes the entire program.
Notice that these variables are declared before main begins.

Execution of the program, with a = 0 and b = 3.141593, produces the following interactive session. The user’s
responses are underlined, as usual.

4]
3.141593

|-
il

xmax = 0.860394 ymax = 0.561096

Thus, we have obtained the location and the value of the maximum within the given original interval.

External variables can be assigned initial values as a part of the variable definitions, but the initial values
must be expressed as constants rather than expressions. These initial values will be assigned only once, at the
beginning of the program. The external variables will then retain these initial values unless they are later
altered during the execution of the program.

If an initial value is not included in the definition of an external variable, the variable will automatically
be assigned a value of zero. Thus, external variables are never left dangling with undefined, garbled values.
Nevertheless, it is good programming practice to assign an explicit initial value of zero when required by the
program logic.

CHAP. 8] PROGRAM STRUCTURE 215

EXAMPLE 8.5 Average Length of Several Lines of Text Shown below is a modification of the program previously
presented in Example 8.3, for determining the average number of characters in several lines of text. The present version
makes use of external variables to represent the total (cumulative) number of characters read, and the total number of lines.

/* read several lines of text and determine the average number of characters per line */

#include <stdio.h>

int sum = 0, {* total number of characters */
int lines = 0; /* total number of lines */

int linecount(void);

main()

{
int n; /* number of chars in given line */
float avg; /* average number of chars per line */

printf("Enter the text below\n');
/* read a line of text and update the cumulative counters */

while ((n = linecount()) > 0) {
sum += n;
++lines;

}

avg = (float) sum / lines;
printf(*\nAverage number of characters per line: %5.2f", avg);

/* read a line of text and count the number of characters */

int linecount(void)

{
char line[80};
int count = 0;
while ((line[count] = getchar()) I= '\n')
++count;
return (count);
}

Notice that sum and lines are external variables that represent the total (cumulative) number of characters read and
the total number of lines, respectively. Both of these variables are assigned initial values of zero. These values are
successively modified within main, as additional lines of text are read.

Also, recall that the earlier version of the program used two different automatic variables, each called count in
different parts of the program. In the present version of the program, however, the variables that represent the same
quantities have different names, since one of the variables (1ines) is now an external variable.

You should understand that sum and 1ines need not be assigned zero values explicitly, since external variables are
always set equal to zero unless some other initial value is designated. We include the explicit zero initialization in order to
clarify the program logic.

Atrrays can also be declared either automatic or external, though automatic arrays cannot be initialized.
We will see how initial values are assigned to array elements in Chap. 9.

216 PROGRAM STRUCTURE [CHAP. 8

Finally, it should be pointed out that there are inherent dangers in the use of external variables, since an
alteration in the value of an external variable within a function will be carried over into other parts of the
program. Sometimes this happens inadvertently, as a side effect of some other action. Thus, there is the
possibility that the value of an external value will be changed unexpectedly, resulting in a subtle programming
error. You should decide carefully which storage class is most appropriate for each particular programming
situation.

8.4 STATIC VARIABLES

In this section and the next, we make the distinction between a single-file program, in which the entire
program is contained within a single source file, and a multifile program, where the functions that make up the
program are contained in separate source files. The rules governing the static storage class are different in
each situation.

In a single-file program, static variables are defined within individual functions and therefore have the
same scope as automatic variables; i.e., they are local to the functions in which they are defined. Unlike
automatic variables, however, static variables retain their values throughout the life of the program. Thus, if a
function is exited and then re-entered at a later time, the static variables defined within that function will retain
their former values. This feature allows functions to retain information permanently throughout the execution
of a program.

Static variables are defined within a function in the same manner as automatic variables, except that the
variable declaration must begin with the static storage-class designation. Static variables can be utilized
within the function in the same manner as other variables. They cannot, however, be accessed outside of their
defining function.

It is not unusual to define automatic or static variables having the same names as external variables. In
such situations the local variables will take precedence over the external variables, though the values of the
external variables will be unaffected by any manipulation of the local variables. Thus the external variables
maintain their independence from locally defined automatic and static variables. The same is true of local
variables within one function that have the same names as local variables within another function.

EXAMPLE 8.6 Shown below is the skeletal structure of a C program that includes variables belonging to several
different storage classes.

float a, b, ¢;

void dummy(void);

main()

{

static float a;

}
void dummy(void)
{
static int a;
int b;
}

Within this program a, b and ¢ are external, floating-point variables. However, a is redefined as a static floating-point
variable within main. Therefore, b and ¢ are the only external variables that will be recognized within main. Note that
the static [ocal variable a will be independent of the external variable a.

CHAP. 8] PROGRAM STRUCTURE 217

Similarly, a and b are redefined as integer variables within dummy. Note that a is a static variable, but b is an
automatic variable. Thus, a will retain its former value whenever dummy is reentered, whereas b will lose its value
whenever control is transferred out of dummy. Furthermore, ¢ is the only external variable that will be recognized within
dummy.

Since a and b are local to dummy, they will be independent of the external variables a, b and c, and the static
variable a defined within main. The fact that a and b are declared as integer variables within dummy and floating-point
variables elsewhere is therefore immaterial.

Initial values can be included in the static variable declarations. The rules associated with the assignment
of these values are essentially the same as the rules associated with the initialization of external variables, even
though the static variables are defined locally within a function. In particular:

1. The initial values must be expressed as constants, not expressions.

2. The initial values are assigned to their respective variables at the beginning of program execution. The
variables retain these values throughout the life of the program, unless different values are assigned
during the course of the computation.

3. Zeros will be assigned to all static variables whose declarations do not include explicit initial values.
Hence, static variables will always have assigned values.

EXAMPLE 8.7 Generating Fibonacci Numbers The Fibonacci numbers form an interesting sequence in which each
number is equal to the sum of the previous two numbers. In other words,

Fi=Fi *Fia

where F; refers to the ith Fibonacci number. The first two Fibonacci numbers are defined to equal 1; i.e.,

Fi=F=1
Hence
Fy=F+F=1+1=2
Fy=F3+F,=2+1=3
Fe=F4+F;=3+2=5
and so on.

Let us write a C program that generates the first n Fibonacci numbers, where n is a value specified by the user. The
main portion of the program will read in a value for n, and then enter a loop that generates and writes out each of the
Fibonacci numbers. A function called fibonacci will be used to calculate each Fibonacci number from its two preceding
values. This function will be called once during each pass through the main loop.

When fibonacci is entered, the computation of the current Fibonacci number, f, is very simple provided the two
previous values are known. These values can be retained from one function call to the next if we assign them to the static
variables 1 and f2, which represent F;_| and F;_,, respectively. (We could, of course, have used external variables for

this purpose, but it is better to use local variables, since F;_| and F;_; are required only within the function.) We then
calculate the desired Fibonacci number as

f =11+ 12

and update the values of 2 and 1 using the formulas
f2 = 11

and
f1=1

Here is the complete C program.

218

execution.

PROGRAM STRUCTURE

/* program to calculate successive Fibonacci numbers */
#include <stdio.h>

long int fibonacci(int count);

main()

{

int count, n;

printf("How many Fibonacci numbers? *);
scanf("%d", &n);
printf("\n");

for (count = 1; count <= n; ++count)
printf(“\ni = %2d F = %1d", count, fibonacci(count));

long int fibonacci(int count)
/* calculate a Fibonacci number using the formulas

F=1fori<3, and F=F1 + F2 for i >= 3 =/

static long int f1 = 1, 12 = 1;
long int f;

f = (count < 3) 21 : f1 + T2;
12 = 11,

f1 =1,

return(f);

[CHAP. 8

Notice that long integers are used to represent the Fibonacci numbers. Also, note that 1 and 12 are static variables
that are each assigned an initial value of 1. These initial values are assigned only once, at the beginning of the program

The subsequent values are retained between successive function calls, as they are assigned. You should

understand that 1 and f2 are strictly local variables, even though they retain their values from one function call to
another.

The output corresponding to a value of n = 30 is shown below. As usual, the user’s response is underlined.

How many Fibonacci numbers? 3Q

i=1 F=1
i= 2 F=1
i= 3 F=2
i= 4 F=3
i= 5 F =25
i= 6 F=28
i= 7 F =13
i= 8 F=21
i= 9 F = 34
i=n10 F = 55
i=1n F = 89
i=12 F = 144
i=13 F = 233

CHAP. 8] PROGRAM STRUCTURE 219

i=14 F = 377
i=15 F = 610
i=16 F = 987
i=17 F = 1597
i=18 F = 25684
i=19 F = 4181
i=20 F = 6765
i=21 F = 10946
i=22 F =17711
i=23 F = 28657
i=24 F = 46368
i=25 F = 75025
i=26 F = 121393
i=27 F = 196418
i=28 F = 317811
i=29 F = 514229
i=30 F = 832040

It is possible to define and initialize static arrays as well as static single-valued variables. The use of
arrays will be discussed in the next chapter.

8.5 MULTIFILE PROGRAMS

A file is a collection of information stored as a separate entity within the computer or on an auxiliary storage
device. A file can be a collection of data, a source program, a portion of a source program, an object program,
etc. In this chapter we will consider a file to be either an entire C program or a portion of a C program, i.e.,
one or more functions. (See Chap. 12 for a discussion of data files, and their relationship to C programs.)

Until now, we have restricted our attention to C programs that are contained entirely within a single file.
Many programs, however, are composed of multiple files. This is especially true of programs that make use
of lengthy functions, where each function may occupy a separate file. Or, if there are many small related
functions within a program, it may be desirable to place a few functions within each of several files. The
individual files will be compiled separately, and then linked together to form one executable object program
(see Sec. 5.4). This facilitates the editing and debugging of the program, since each file can be maintained at a
manageable size.

Multifile programs allow greater flexibility in defining the scope of both functions and variables. The
rules associated with the use of storage classes become more complicated, however, because they apply to
functions as well as variables, and more options are available for both external and static variables.

Functions

Let us begin by considering the rules associated with the use of functions. Within a multifile program, a
function definition may be either external or static. An external function will be recognized throughout the
entire program, whereas a static function will be recognized only within the file in which it is defined. In each
case, the storage class is established by placing the appropriate storage-class designation (i.e., either extern
or static) at the beginning of the function definition. The function is assumed to be external if a storage-
class designation does not appear.

In general terms, the first line of a function definition can be written as

storage-class data-type name(type 1 arg 1, type 2 arg 2, . . .,
type n arg n

220 PROGRAM STRUCTURE [CHAP. 8

where storage-class refers to the storage-class associated with the function, data- type refers to the data-
type of the value returned by the function, name refers to the function name, type 7, type 2, . . .,
type n refer to the formal argument types, and arg 1, arg 2, . . ., arg n refer to the formal
arguments themselves. Remember that the storage-class, the data-type, and the formal arguments need not all
be present in every function definition.

When a function is defined in one file and accessed in another, the latter file must include a function
declaration. This declaration identifies the function as an external function whose definition appears
elsewhere. Such declarations are usually placed at the beginning of the file, ahead of any function definitions.

It is good programming practice to begin the declaration with the storage-class specifier extern. This
storage-class specifier is not absolutely necessary, however, since the function will be assumed to be external
if a storage-class specifier is not present.

In general terms, a function declaration can be written as

storage-class data-type name(argument type 1, argument type 2, . . .,

argument type n),;
A function declaration can also be written using full function prototyping (see Sec. 7.4) as

storage-class data-type name(type ! arg 1, type 2 arg 2, . . .,
type n arg nj;

Remember that the storage-class, the data-type and the argument types need not all be present in every
function declaration.

To execute a multifile program, each individual file must be compiled and the resulting object files linked
together. To do so, we usually combine the source files within a project. We then build the project (i.e.,
compile all of the source files and link the resulting object files together into a single executable program). If
some of the source files are later changed, we make another executable program (i.e., compile the new source
files and link the resulting object files, with the unchanged object files, into a new executable program). The
details of how this is done will vary from one version of C to another.

EXAMPLE 8.8 Here is a simple program that generates the message “Hello, there!” from within a function. The
program consists of two functions: main and output. Each function appears in a separate file.

Eirst file:

/* simple, multifile program to write *Hello, therel® */
#include <stdio.h>

extern void output(void); /* function prototype */

main()

{
output();

}
Second file:

extern void output(void) /* external function definition */

{
printf(“Hello, there!");

return;

CHAP. 8] PROGRAM STRUCTURE 221

Notice that output is assigned the storage class extern, since it must be accessed from a file other than the one in
which it is defined; it must therefore be an external function. Hence, the keyword extern is included in both the function
declaration (in the first file) and the function definition (in the second file). Since extern is a default storage class,
however, we could have omitted the keyword extern from both the function declaration and the function definition.
Thus, the program could be written as follows:

First file:

/* simple, multifile program to write "Hello, there!" */
#include <stdio.h>

void output(void); /* function prototype */

main()

{
output();

Second file;

void output(void) /* external function definition */
{

printf{"Hello, there!");

return;

Turbo Cé+ - exB-8

File [Edit Search View Project Debug Tool QOptions Window Help

citurbocifilel.c
/* simple, multifile program to write "Hello, there!™ */

#include <stdio.h>

void output (void) ; /* function prototype */
void main(veid)
{
output () ; II cAturbocifile?.c Eiﬁi
) void output (void) /* external function definition */

(
printf("Hello, therxe!"™):
return;

Project : cMurbociexB-.ide

« D Fe2 o] code size=25 bnesed deta size=14
+ L) filel [.c] code size=19 lnes=3 data size=0

Fig. 8.4

222 PROGRAM STRUCTURE [CHAP. 8

Let us now build a Turbo C++ project corresponding to this multifile program. To do so, we first enter the source
code shown in the first file, and save it in a file called FILE1.C. We then enter the source code shown in the second file,
and save it in a file called FILE2.C. These two files are shown within separate windows in Fig. 8.4.

Next, we select New from the Project menu, and specify EX8-8.IDE as the project name. This will result in the
Project window being opened, as shown near the center of Fig. 8.4. Within this window, we see that the project will
result in an executable program called EX8-8.EXE. This executable program will be obtained from the previous two
source files, FILE1.C and FILE2.C.

The program can now be executed by selecting Run from the Debug menu, as explained in Chap. 5 (see Example
5.4). The resulting message, Hello, therel!, is displayed in the output window, as shown in the lower right portion of
Fig. 8.4.

If a file contains a static function, it may be necessary to include the storage class static within the
function declaration or the function prototype.

EXAMPLE 8.9 Simulation of a Game of Chance (Shooting Craps) Here is another version of the craps game
simulation, originally presented in Example 7.11. In this version the program consists of two separate files. The first file
contains main, whereas the second file contains the functions play and throw.

First file:
/* simulation of a craps game */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

#define SEED 12345

extern void play(void); /* function prototype */
main()
{

char answer = 'Y';

printf(*Welcome to the Game of CRAPS\n\n");
printf("To throw the dice, press RETURN\n\n');

srand(SEED); /* initialize the random number generator */
/* main loop */

while (toupper(answer) = 'N') {
play();
printf(*\nDo you want to play again? (Y/N) ");
scanf (" %c", &answer);
printf("\n");

}

printf("Bye, have a nice day");
}
Second file:

#include <stdio.h>
#include <stdlib.h>

static int throw(void); /* function prototype */
extern void play(void) /* external function definition */

CHAP. 8]

/* simulate one complete game */

{
int scorel, score2;
char dummy;
printf(*\nPlease throw the dice . . .");
scanf("%c", &dummy);
printf("\n*);
scoreil = throw();
printf(*\n%2d*, scoreil);
switch (scorel) {
case 7: /* win on first throw */
case 11:
printf(" - Congratulations! You WIN on the first throw\n");
break;
case 2: /* lose on first throw */
case 3:
case 12:
printf(* - Sorry, you LOSE on the first throw\n"),
break;
case 4 /* additional throws are required */
case S
case 6:
case 8:
case 9:
case 10:
do {
printf (" - Throw the dice again .
scanf("%c", &dummy);
score2 = throw();
printf(*\n%2d", score2);
} while (score2 != scorel && score2 |= 7);
if (score2 == scorel)
printf(* - You WIN by matching your first score\n®);
else
printf(® - You LOSE by failing to match your first score\n");
break;
}
return;
}

/* simulate one throw of a pair of dice */

static int throw(void) /* static function definition */

{

float x1, x2; /* random floating-point numbers between 0 and 1 */
int n1, n2; /* random integers between {1 and 6 */

PROGRAM STRUCTURE

223

224 PROGRAM STRUCTURE [CHAP. 8

x1 = rand() / 32768.0;

x2 = rand() / 32768.0;

nt =1 + (int) (6 * x1); /* simulate first die */

n2 =1+ (int) (6 * x2); /* simulate second die */
return(n1 + n2); /* score is sum of two dice */

Notice that play is defined as an external function, so it can be accessed from main (because main and play are
defined in separate files). Therefore, play is declared an external function within the first file. On the other hand, throw
is accessed only by play. Both throw and play are defined in the second file. Hence throw need not be recognized in
the first file. We can therefore define throw to be a static function, confining its scope to the second file.

Also, notice that each file has a separate set of #include statements for the header files stdio.h and stdlib.h.
This ensures that the necessary declarations for the library functions are included in each file.

When the individual files are compiled and linked, and the resulting executable program is run, the program
generates a dialog identical to that shown in Example 7.11, as expected.

Variables

Within a multifile program, external (global) variables can be defined in one file and accessed in another. We
again emphasize the distinction between the definition of an external variable and its declarations. An
external variable definition can appear in only one file. Its location within the file must be external to any
function definition. Usually, it will appear at the beginning of the file, ahead of the first function definition.

External variable definitions may include initial values. Any external variable that is not assigned an
initial value will automatically be initialized to zero. The storage-class specifier extern is not required within
the definition; in fact, many versions of C specifically forbid the appearance of this storage-class specifier in
external variable definitions. Thus, external variable definitions are recognized by their location within the
defining files and by their appearance. We will follow this convention in this book.

In order to access an external variable in another file, the variable must first be declared within that file.
This declaration may appear anywhere within the file. Usually, however, it will be placed at the beginning of
the file, ahead of the first function definition. The declaration must begin with the storage-class specifier
extern. Initial values cannot be included in external variable declarations.

The value assigned to an external variable may be altered within any file in which the variable is
recognized. Such changes will be recognized in all other files that fall within the scope of the variable. Thus,
external variables provide a convenient means of transferring information between files.

EXAMPLE 8.10 Shown below is a skeletal outline of a two-file C program that makes use of external variables.

Eirst file:

inta=1,b=2, ¢c=3; /* external variable DEFINITION */
extern void functi(void); /* external function DECLARATION */
main() /* function DEFINITION */

{

CHAP. 8] PROGRAM STRUCTURE 225

Second file:

extern int a, b, ¢ /* external variable DECLARATION */
extern void functi(void) /* external function DEFINITION */
{
}

The variables a, b and ¢ are defined as external variables within the first file, and assigned the initial values 1, 2 and
3, respectively. The first file also contains a definition of the function main, and a declaration for the external function
functi, which is defined elsewhere. Within the second file we see the definition of funct1, and a declaration for the
external variables a, b and ¢.

Notice that the storage-class specifier extern appears in both the definition and the declaration of the external
function funct1. This storage-class specifier is also present in the declaration of the external variables (in the second
file), but it does nof appear in the definition of the external variables (in the first file).

The scope of a, b and ¢ is the entire program. Therefore these variables can be accessed, and their values altered, in
either file, i.e., in either main or functi.

EXAMPLE 8.11 Search for a Maximum In Example 8.4 we presented a C program that determines the value of x
which causes the function

y=2xcos (x)

to be maximized within a specified interval. We now present another version of this program, in which each of the three
required functions is placed in a separate file.

Eirst file:
/* find the maximum of a function within a specified interval */

#include <stdio.h>

double a, b, x1, yl, xr, yr, cnst = 0.0001; /* external variable definition */
extern void reduce(void); /* external function prototype */
extern double curve(double x1); /* external function prototype */
main() /* function definition */

{

double xmax, ymax;
/* read input data (interval end points) */

printf(*\na = ");
scanf ("%1f", &a);
printf(*b = *);

scanf("%1lf", &b);

/* interval reduction loop */

do
reduce();
while ((yl I= yr) && ((b - a) > 3 * c¢cnst));

226 PROGRAM STRUCTURE [CHAP. 8§
/* calculate xmax and ymax, and display the results */
xmax = 0.5 * (x1 + xr);
ymax = curve(xmax);
printf("\nxmax = %8.61T ymax = %8.61fT", xmax, ymax);
}
Second file:
/* interval reduction routine */
extern double a, b, xl1, yl, xr, yr, cnst; /* external variable declaration */
extern double curve(double xl}; /* external function prototype */
extern void reduce(void) /* external function definition */
{
xl =a+05"* (b-a - cnst),;
xr = x1 + cnst;
yl = curve(xl});
yr = curve(xr);
if (yl > yr) { /* retain left interval */
b = xr;
return;
}
if (yl < yr) /* retain right interval */
a = xl;
return;
}
Third file:

/* evaluate the function y = x * cos(x) */

#include <math.h>

extern

{

double curve(double x) /* external function definition */

return (x * cos(x));

}

The external function reduce, which is defined in the second file, is declared in the first file. Therefore its scope is
the first two files. Similarly, the external function curve, which is defined in the third file, is declared in the first and

second files.

Hence, its scope is the entire program. Notice that the storage-class specifier extern appears in both the

function definitions and the function prototypes.

Now consider the external variables a, b, x1, yl, xr, yr and cnst, which are defined in the first file. Observe that
cnst is assigned an initial value within the definition. These variables are utilized, and hence declared, in the second file,
but not in the third file. Note that the variable declaration (in the second file) includes the storage-class specifier extern,
but the variable definition (in the first file) does not include a storage-class specifier.

Finally, notice the #include <math.h> statement at the beginning of the third file. This statement causes the
header file math. h to be included in the third source file, in support of the cos library function.

Execution of this program results in output that is identical to that shown in Example 8.4.

CHAP. 8] PROGRAM STRUCTURE 227

Within a file, external variables can be defined as static. To do so, the storage-class specifier static is
placed at the beginning of the definition. The scope of a static external variable will be the remainder of the
file in which it is defined. It will not be recognized elsewhere in the program (i.e, in other files). Thus, the
use of static external variables within a file permits a group of variables to be “hidden” from the remainder of
a program. Other external variables having the same names can be defined in the remaining files. (Usually,
however, it is not be a good idea to use identical variable names. Such identically named variables may cause
confusion in understanding the program logic, even though they will not conflict with one another
syntactically.)

EXAMPLE 8.12 Generating Fibonacci Numbers Let us return to the problem of calculating Fibonacci numbers,
which we originally considered in Example 8.7. If we rewrite the program as a two-file program employing static external
variables, we obtain the following complete program.

Eirst file:
/* program to calculate successive Fibonacci numbers */

#include <stdio.h>

extern long int fibonacci(int count); /* external function prototype */
main() /* function definition */
{

int count, n;

printf("How many Fibonacci numbers? *);
scanf("“%d", &n);
printf("\n");

for (count = 1; count <= n; ++count)
printf("\ni = %2d F = %ld", count, fibonacci(count));

}
Second file:
/* calculate a Fibonacci number (F = 1 for i < 3, and F = F1 + F2 for i >= 3) */
static long int f1 = 1, f2 = 1; /* static external variable definition */
long int fibonacci(int count) /* external function definition */
{

long int fT;

f = (count < 3) ?2 1 : 1 + 12;

f2 = 11,

f1=1;

return(f);

In this program the function fibonacci is defined in the second file and declared in the first file, so that its scope is
the entire program. On the other hand, the variables 1 and 12 are defined as static external variables in the second file.
Their scope is therefore confined to the second file. Note that the variable definition in the second file includes the
assignment of initial values.

Execution of this program results in output that is identical to that shown in Example 8.7.

228 PROGRAM STRUCTURE [CHAP. 8

8.6 MORE ABOUT LIBRARY FUNCTIONS

Our discussion of multifile programs can provide additional insight into the use of library functions. Recall
that library functions are prewritten routines that carry out various commonly used operations or calculations
(see Sec. 3.6). They are contained within one or more library files that accompany each C compiler.

During the process of converting a C source program into an executable object program, the compiled
source program may be linked with one or more /ibrary files to produce the final executable program. Thus,
the final program may be assembled from two or more separate files, even though the original source program
may have been contained within a single file. The source program must therefore include declarations for the
library functions, just as it would for programmer-defined functions that are placed in separate files.

One way to provide the necessary library-function declarations is to write them explicitly, as in the
multifile programs presented in the last section. This can become tedious, however, since a small program
may make use of several library functions. We wish to simplify the use of library functions to the greatest
extent possible. C offers us a clever way to do this, by placing the required library-function declarations in
special source files, called header files.

Most C compilers include several header files, each of which contains declarations that are functionally
related (see Appendix H). For example, stdio.h is a header file containing declarations for input/output
routines; math.h contains declarations for certain mathematical functions; and so on. The header files also
contain other information related to the use of the library functions, such as symbolic constant definitions.

The required header files must be merged with the source program during the compilation process. This
is accomplished by placing one or more #include statements at the beginning of the source program (or at
the beginning of the individual program files). We have been following this procedure in all of the
programming examples presented in this book.

EXAMPLE 8.13 Compound Interest Example 5.2 originally presented the following C program for carrying out
simple compound interest calculations.

/* simple compound interest problem */

#include <stdio.h>
#include <math.h>

main()

{

float p,r,n,i,T;
/* read input data (including prompts) */

printf("Please enter a value for the principal (P): "});
scanf("%f", &p);

printf("Please enter a value for the interest rate (r): ");
scanf (“%f", &r),

printf("Please enter a value for the number of years (n): “);
scanf("%f", &n);

/* calculate i, then f */

i
f

r / 100;
p * pow((1 + i),n);

/* display the output */

printf(*\nThe final value (F) is: %.2f\n", f);

CHAP. 8] PROGRAM STRUCTURE 229

This program makes use of two header files, stdio.h and math.h. The first header file contains declarations for the
printf and scanf functions, whereas the second header file contains a declaration for the power function, pow.
We can rewrite the program if we wish, removing the #include statements and adding our own function

declarations, as follows.

/* simple compound interest problem */

extern int printf(); /* library function declaration */
extern int scanf(); /* library function declaration */
extern double pow(double, double); /* library function declaration */
main()

{

float p,r,n,i,f;
/* read input data (including prompts) */

printf(*Please enter a value for the principal (P): ");

scanf ("%f", &p);

printf(*Please enter a value for the interest rate (r): ");
scanf("%f", &r);

printf("Please enter a value for the number of years (n): ");
scanf("%f", &n);

/* calculate i, then f */

i
f

r / 100;
p * pow((1 + 1),n);

/* display the output */

printf(*\nThe final value (F) is: %.2f\n", 1);
}

This version of the program is compiled in the same way as the earlier version, and it will generate the same output when
executed. In practice the use of such programmer-supplied function declarations is not done, however, as it is more
complicated and it provides additional sources of error. Moreover, the error checking that occurs during the compilation
process will be less complete, because the argument types are not specified for the printf and scanf function. (Note
that the number of arguments in printf and scanf can vary from one function call to another. The manner in which
argument types are specified under these conditions is beyond the scope of our present discussion.)

Platform independence (i.e., machine independence) is a significant advantage in this approach to the use
of library functions and header files. Thus, machine-dependent features can be provided as library functions,
or as character constants or macros (see Sec. 14.4) that are included within the header files. A typical C
program will therefore run on many different kinds of computers without alteration, provided the appropriate
library functions and header files are utilized. The portability resulting from this approach is a major
contributor to the popularity of C.

Review Questions

8.1 What is meant by the storage class of a variable?
8.2 Name the four storage-class specifications included in C.
83 What is meant by the scope of a variable within a program?

84 What is the purpose of an automatic variable? What is its scope?

230

8.5

8.6
8.7
88
8.9

8.10

8.11

8.12
8.13
8.14
8.15

8.16
8.17

8.18

8.19
8.20

8.21

8.22

8.23
8.24

8.25

PROGRAM STRUCTURE [CHAP. 8

How is an automatic variable defined? How is it initialized? What happens if an automatic variable is not
explicitly initialized within a function?

Does an automatic variable retain its value once control is transferred out of its defining function?
What is the purpose of an external variable? What is its scope?
Summarize the distinction between an external variable definition and an external variable declaration.

How is an external variable defined? How is it initialized? What happens if an external variable definition does
not include the assignment of an initial value? Compare your answers with those for automatic variables.

Suppose an external variable is defined outside of function A and accessed within the function. Does it matter
whether the external variable is defined before or after the function? Explain.

In what way is the initialization of an external variable more restricted than the initialization of an automatic
variable?

What is meant by side effects?
What inherent dangers are there in the use of external variables?
What is the purpose of a static variable in a single-file program? What is its scope?

How is a static variable defined in a single-file program? How is a static variable initialized? Compare with
automatic variables.

Under what circumstances might it be desirable to have a program composed of several different files?

Compare the definition of functions within a multifile program with the definition of functions within a single-file
program. What additional options are available in the multifile case?

In a multifile program, what is the default storage class for a function if a storage class is not explicitly included in
the function definition?

What is the purpose of a static function in a multifile program?

Compare the definition of external variables within a multifile program with the definition of external variables
within a single-file program. What additional options are available in the multifile case?

Compare external variable definitions with external variable declarations in a multifile program. What is the
purpose of each? Can an external variable declaration include the assignment of an initial value?

Under what circumstances can an external variable be defined to be static? What advantage might there be in
doing this?
What is the scope of a static external variable?

What is the purpose of a header file? Is the use of a header file absolutely necessary?

Problems

Describe the output generated by each of the following programs.

(@) #include <stdio.h> .
int functi(int count);

main()

{

int a, count;

for (count = 1; count <= §5; ++count) {
a = functi(count);
printf("%sd ", a);

CHAP. 8]

)

(©)

PROGRAM STRUCTURE

funct1(int x)

{
int y = 0;
y += X
return(y);
}

#include <stdio.h>

int funct1(int count);

main()

{

int a, count;

for (count = 1; count <= 5; ++count) {
a = functi(count);
printf(*%d *, a);

}

}

funct1(int x)

{
static int y = 0;
y += X
return(y};

}

#include <stdio.h>

int functi(int a);
int funct2(int a);

main()

{

int a = 0, b = 1, count;

for (count = t1; count <= 5; ++count) {
b += functi(a) + funct2(a);

printf(‘%sd *, b);
}
}
funct1(int a)
{
int b;
b = funct2(a);
return(b);
}

funct2(int a)

{
static int b = 1;
b += 1;
return(b + a);

231

232 PROGRAM STRUCTURE [CHAP. 8

8.26 Write the first line of the function definition for each of the situations described below.

(a) The second file of a two-file program contains a function called solver which accepts two floating-point
quantities and returns a floating-point argument. The function will be called by other functions which are
defined in both files.

() The second file of a two-file program contains a function called solver which accepts two floating-point
quantities and returns a floating-point argument, as in the preceding problem. Recognition of this function
is to remain local within the second file.

8.27 Add the required (or suggested) function declarations for each of the skeletal outlines shown below.

(a) This is a two-file program.
First file:
main()

{

double x, y, z;

z = functi(x, y);

}
Second file:

double functi(double a, double b)
{

(b) This is a two-file program.
First file:
main()

{

double x, y, Z;

z = functi(x, ¥y);

Second file:

double functi(double a, double b)
{

double c¢;

¢ = funct2(a, b);

CHAP. 8]

8.28 Describe the output generated by each of the following programs.

(@)

(6

()

PROGRAM STRUCTURE

static double funct2(double a, double b)
{

}

#include <stdio.h>
int a = 3;

int funct1(int count);

main()

{

int count;

for (count = 1; count <= §; ++count) {
a = functi(count);
printf("%sd ", a);

funct1(int x)

{
a += x;
return(a);

#include <stdio.h>
int a = 100, b = 200;

int functi1(int a, int b);

main()

{

int count, ¢, d;

for (count = 1; count <= 5; ++count) {
¢ =20 * (count - 1),
d = 4 * count * count;

printf(*%d %d *, functi(a, c¢), functi(b, d));

functi(int x, int y)

{

return(x - vy);

#include <stdio.h>
int a = 100, b = 200;

int functi(int c);

233

234

(@)

(@

PROGRAM STRUCTURE

main()

{

int count, c;

for (count = 1; count <= 5; ++count) {
¢ = 4 * count * count;
printf("sd *, functi(c));

functi1(int x)

{
int c;
c=(x<50) 7 (a+x): (b-x);
return(c);

}

#include <stdio.h>
int a = 100, b = 200;
int functi(int count);

int funct2(int c¢);

main()

{

int count;

for (count = 1; count <= 5; ++count)
printf(*sd ", functi(count));

functi(int x)

{
int ¢, d;
c = funct2(x);
d=(c <100) 7 (a +c) : b;
return(d);
}

funct2(int x)

{
static int prod = 1;
prod *= Xx;
return(prod);

}

#include <stdio.h>

int functi(int a);
int funct2(int b);

[CHAP. 8

CHAP. 8]

PROGRAM STRUCTURE

main()

{

int a = 0, b = 1, count;

for (count = 1; count <= 5; ++count) {
b += functi(a + 1) + 1;
printf(*%d *, b);

functi(int a)

{
int b;
b = funct2(a + 1) + 1;
return(b);

}

funct2(int a)
{

return(a + 1);

#include <stdio.h>
inta=0, b=1;

int functi(int a);
int funct2(int b);

main()

{

int count;

for (count = 1; count <= §; ++count) {
b += functi(a + 1) + 1;
printf(*%sd *, b);

functi(int a)

{
int b;
b = funct2(a + 1) + 1;
return(b);

}

funct2(int a)
{

return(a + 1);

235

236 PROGRAM STRUCTURE [CHAP. 8

() #include <stdio.h>
int a =0, b=1;

int functi(int a);
int funct2(int b);

main()

{

int count;

for (count = 1; count <= §; ++count) {
b += functi(a + 1) + 1;
printf("%d ", b);

}
}
functi(int a)
{
b = funct2(a + 1) + 1;
return(b);
}
funct2(int a)
{
return(b + a);
}

(k) #include <stdio.h>
int count = 0;

void functi(void);

main()

{
printf("Please enter a line of text below\n");
functi(});
printf("%d”, count);

}
void functi(void)
{
char c¢;
if ((c = getchar()) != '\n') {
++count;
functi();
}
return;
}

Programming Problems

829 The program given in Example 8.4 can easily be modified to minimize a function of x. This minimization
procedure can provide us with a highly effective technique for calculating the roots of a nonlinear algebraic

CHAP. 8] PROGRAM STRUCTURE 237

8.30

8.31

8.32

equation. For example, suppose we want to find the particular value of x that causes some function f(x) to equal
zero. A typical function of this nature might be

S(x)=x+ cos(x) — | - sin(x).

If we let y(x) = f(x)z, then the function y(x) will always be positive, except for those values of x that are roots of
the given function [i.e., for which f(x), and hence y(x), will equal zero). Therefore, any value of x that causes y(x)
to be minimized will also be a root of the equation f{x) = 0.

Modify the program shown in Example 8.4 to minimize a given function. Use the program to obtain the roots
of the following equations:

(@) x+cos(x)=1+sin(x), n2<x<x
®) x+3x2+10, 0<=x<=3 (see Example 6.21)

Modify the program shown in Example 7.11 so that a sequence of craps games will be simulated automatically, in
a noninteractive manner. Enter the total number of games as an input variable. Include within the program a
counter that will determine the total number of wins. Use the program to simulate a large number of games (e.g.,
1000). Estimate the probability of coming out ahead when playing multiple games of craps. This value,
expressed as a decimal, is equal to the number of wins divided by the total number of games played. If the
probability exceeds 0.500, it favors the player; otherwise it favors the house.

Rewrite each of the following programs so that it includes at least one programmer-defined function, in addition to
the main function. Be careful with your choice of arguments and (if necessary) external variables.

(@) Calculate the weighted average of a list of numbers [see Prob. 6.69(a)].

() Calculate the cumulative product of a list of numbers [see Prob. 6.69(b)].

(¢) Calculate the geometric average of a list of numbers [see Prob. 6.69(c)].

(d) Calculate and tabulate a list of prime numbers [see Prob. 6.69(/)].

(e) Compute the sine of x, using the method described in Prob. 6.69(;).

) Compute the repayments on a loan [see Prob. 6.69(/)).

(g) Determine the average exam score for each student in a class, as described in Prob. 6.69(k).

Write a complete C program to solve each of the problems described below. Utilize programmer-defined
functions wherever appropriate. Compile and execute each program using the data given in the problem
description.

(@) Suppose you place a given sum of money, A4, into a savings account at the beginning of each year for n
years. If the account earns interest at the rate of ¢ percent annually, then the amount of money that will
have accumulated after n years, F, is given by

F=A[(1+i/100)+ (1 + #/100)2 + (1 + i#100)3 + - - - + (1 + i/100)")

Write a conversational-style C program to determine the following.

(/) How much money will accumulate after 30 years if $1000 is deposited at the beginning of each year
and the interest rate is 6 percent per year, compounded annually?

(if) How much money must be deposited at the beginning of each year in order to accumulate $100,000
after 30 years, again assuming that the interest rate is 6 percent per year, with annual compounding?

In each case, first determine the unknown amount of money. Then create a table showing the total amount
of money that will have accumulated at the end of each year. Use the function written for Prob. 7.43 to
carry out the exponentiation.

(6) Modify the above program to accommodate quarterly rather than annual compounding of interest. Compare
the calculated results obtained for both problems. Hint: The proper formula is

F=A[(1 +i/100m)™ + (1 + i#100m)2™ + (1 + i/100m)3™ + - - + + (1 + i/100m)"™™]

where m represents the number of interest periods per year.

238

(©)

C))

PROGRAM STRUCTURE [CHAP. 8

Home mortgage costs are determined in such a manner that the borrower pays the same amount of money
to the lending institution each month throughout the life of the mortgage. The fraction of the total monthly
payment that is required as an interest payment on the outstanding balance of the loan varies, however,
from month to month. Early in the life of the mortgage most of the monthly payment is required to pay
interest, and only a small fraction of the total monthly payment is applied toward reducing the amount of
the loan. Gradually, the outstanding balance becomes smaller, which causes the monthly interest payment
to decrease, and the amount available to reduce the outstanding balance therefore increases. Hence the
balance of the loan is reduced at an accelerated rate.

Typically, prospective home buyers know how much money they must borrow and the time required for
repayment. They then ask a lending institution how much their monthly payment will be at the prevailing
interest rate. They should also be concerned with how much of each monthly payment is charged to
interest, how much total interest they have paid since they first borrowed the money, and how much money
they still owe the lending institution at the end of each month.

Write a C program that can be used by a lending institution to provide a potential customer with this
information. Assume that the amount of the loan, the annual interest rate and the duration of the loan are
specified. The amount of the monthly payment is calculated as
A=iPQ+)0/[(1+i"-1]
where 4 = monthly payment, dollars
P = total amount of the loan, dollars
i = monthly interest rate, expressed as a decimal (e.g., 1/2 percent would be written 0.005)
n = total number of monthly payments
The monthly interest payment can then be calculated from the formula
I=iB
where /= monthly interest payment, dollars
B = current outstanding balance, dollars
The current outstanding balance is simply equal to the original amount of the loan, less the sum of the

previous payments toward principal. The monthly payment toward principal (i.e., the amount which is used
to reduce the outstanding balance) is simply

T=4-1

where 7' = monthly payment toward principal.

Use the program to calculate the cost of a 25-year, $50,000 mortgage at an annual interest rate of 8
percent. Then repeat the calculations for an annual interest rate of 8.5 percent. Make use of the function
written for Prob. 7.43 to carry out the exponentiation. How significant is the additional 0.5 percent in the
interest rate over the entire life of the mortgage?

The method used to calculate the cost of a home mortgage in the previous problem is known as a constant
payment method, since each monthly payment is the same. Suppose instead that the monthly payments
were computed by the method of simple interest. That is, suppose that the same amount is applied toward
reducing the loan each month. Hence

T=P/n
However, the monthly interest will depend on the amount of the outstanding balance; that is,
I=iB

Thus the total monthly payment, 4 = T + I, will decrease each month as the outstanding balance diminishes.

Write a C program to calculate the cost of a home mortgage using this method of repayment. Label the
output clearly. Use the program to calculate the cost of a 25-year, $50,000 loan at 8 percent annual interest.
Compare the results with those obtained in part (c) above.

CHAP. 8]

(e)

@

PROGRAM STRUCTURE 239

Suppose we are given a number of discrete points (xy, y), (¥3, ¥2), . . ., (%,,, ,,) read from a curve y = fx),
where x is bounded between x; and x,,. We wish to approximate the area under the curve by breaking up the
curve into a number of small rectangles and calculating the area of these rectangles. (This is known as the
trapezoidal rule.) The appropriate formula is

A= +y)xy = x|)2+(p+y3)x3 —x9)/2+ (v ¥,)x, = X,)2

Notice that the average height of each rectangle is given by (y; + y;1| /2 and the width of each rectangle is
equalto (x; 1 —x) i=1,2,...,n-1

Write a C program to implement this strategy, using a function to evaluate the formula y = fix). Use
the program to calculate the area under the curve y = x3 between the limits x = 1 and x = 4. Solve this
problem first with 16 evenly spaced points, then with 61 points, and finally with 301 points. Note that the
accuracy of the solution will improve as the number of points increases. (The exact answer to this problem
is 63.75.)

Part (e) above describes a method known as the frapezoidal rule for calculating the area under a curve y(x),
where a set of tabulated values (x, (), (x5, 13), . . ., (x,,, ¥,,) is used to describe the curve. If the tabulated
values of x are equally spaced, then the equation given in the preceding problem can be simplified to read

A=+ 2+ 23+ 24+ + 2, | +y)H2

where k is the distance between successive values of x.
Another technique that applies when there is an even number of equally spaced intervals (i.e., an odd
number of data points) is Simpson 's rule. The computational equation for implementing Simpson’s rule is

A= +4yy + 23+ 4y + 25+ +dy, | +,)k3

For a given value of A, this method will yield a more accurate result than the trapezoidal rule. (Note that the
method requires about the same amount of computational complexity as the trapezoidal rule.)

Write a C program for calculating the area under a curve using either of the above techniques,
assuming an odd number of equally spaced data points. Implement each method with a separate function,
and utilize another independent function to evaluate y(x).

Use the program to calculate the area under the curve

y=e*

where x ranges from 0 to 1. Calculate the area using each method, and compare the results with the correct
answer of 4 = (0.7468241,

Still another technique for calculating the area under a curve is to employ the Monte Carlo method, which
makes use of randomly generated numbers. Suppose that the curve y = f(x) is positive for any value of x
between the specified lower and upper limits x = a and x = 4. Let the largest value of y within these limits
be y*. The Monte Carlo method proceeds as follows.

(i) Begin with a counter set equal to zero.

(#) Generate a random number, r,., whose value lies between a and 6.
(iii) Evaluate y{r,).
(iv) Generate a second random number, Ty whose value lies between 0 and 3*.

(v Compare y with y(r,). If ry is less than or equal to y{(r,), then this point will fall on or under the

given curve. Hence the counter is incremented by 1.
(vi) Repeat steps (it) through (v) a large number of times. Each time will be called a cycle.

(vii) When a specified number of cycles has been completed, the fraction of points that fell on or under
the curve, F, is computed as the value of the counter divided by the total number of cycles. The area
under the curve is then obtained as

A=FR*0b - a).

240

(n)

?)

)

PROGRAM STRUCTURE [CHAP. 8

Write a C program to implement this strategy. Use this program to find the area under the curve y = ¢™*
between the limits @ = 0 and b = 1. Determine how many cycles are required to obtain an answer that is
accurate to three significant figures. Compare the computer time required for this problem with the time
required for the preceding problem. Which method is better?

A normally distributed random variate x, with mean 4 and standard deviation g, can be generated from the
formula

N
Y- N2

i=l
JNv/2

where r; is a uniformly distributed random number whose value lies between 0 and 1. A value of N = 12 is
frequently selected when using this formula. The underlying basis for the formula is the central limit
theorem, which states that a set of mean values of uniformly distributed random variates will tend to be
normally distributed.

Write a C program that will generate a specified number of normally distributed random variates with
a given mean and a given standard deviation. Let the number of random variates, the mean and the standard
deviation be input quantities to the program. Generate each random variate within a function that accepts
the mean and standard deviation as arguments.

x=H4+0o

Write a C program that will allow a person to play a game of tic-tac-toe against the computer. Write the
program in such a manner that the computer can be either the first or the second player. If the computer is
the first player, let the first move be generated randomly. Write out the complete status of the game after
each move. Have the computer acknowledge a win by either player when it occurs.

Write a complete C program that includes a recursive function to determine the value of the nth Fibonacci
number, F,, where F, = F, | + F, 5 and F; = F; = 1 (see Example 8.7). Let the value of n be an input
quantity.

Chapter 9

Arrays

Many applications require the processing of muitiple data items that have common characteristics (e.g., a set
of numerical data, represented by xy, x1, . . ., x,). In such situations it is often convenient to place the data
items into an array, where they will all share the same name (e.g., x). The individual data items can be
characters, integers, floating-point numbers, etc. However, they must all be of the same type and the same
storage class.

Each array element (i.e., each individual data item) is referred to by specifying the array name followed
by one or more subscripts, with each subscript enclosed in square brackets. Each subscript must be expressed
as a nonnegative integer. In an n-element array, the array elements are x[0], x[1], x[2],...,x[n-1], as
illustrated in Fig. 9.1. The value of each subscript can be expressed as an integer constant, an integer variable
or a more complex integer expression.

x[0] x[1] x[2] x[n-2] x[n-1]

x is an n-element, one-dimensional array

Fig. 9.1

The number of subscripts determines the dimensionality of the array. For example, x[i] refers to an
element in the one-dimensional array x. Similarly, y[1i][j] refers to an element in the two-dimensional array
y. (We can think of a two-dimensional array as a table, where y[1]}[j] is the jth element of the ith row.)
Higher-dimensional arrays can be also be formed, by adding additional subscripts in the same manner (e.g.,
Z[i)[7)K]).

Recall that we have used one-dimensional character arrays earlier in this book, in conjunction with the
processing of strings and lines of text. Thus, arrays are not entirely new, even though our previous references
to them were somewhat casual. We will now consider arrays in greater detail. In particular, we will discuss
the manner in which arrays are defined and processed, the passing of arrays to functions, and the use of
multidimensional arrays. Both numerical and character-type arrays will be considered. Initially we will
concentrate on one-dimensional arrays, though multidimensional arrays will be considered in Sec. 9.4.

9.1 DEFINING AN ARRAY

Arrays are defined in much the same manner as ordinary variables, except that each array name must be
accompanied by a size specification (i.e., the number of elements). For a one-dimensional array, the size is
specified by a positive integer expression, enclosed in square brackets. The expression is usually written as a
positive integer constant.

In general terms, a one-dimensional array definition may be expressed as

storage-class data-type array|expression];

241

242 ARRAYS [CHAP. 9

where storage-class refers to the storage class of the array, data-type is the data type, array is the
array name, and expression is a positive-valued integer expression which indicates the number of array
elements. The storage-class is optional; default values are automatic for arrays that are defined within a
function or a block, and external for arrays that are defined outside of a function.

EXAMPLE 9.1 Several typical one-dimensional array definitions are shown below.

int x[100];

char text{80],

static char message[25];
static float n{12];

The first line states that x is a 100-element integer array, and the second defines text to be an §0-element character array.
In the third line, message is defined as a static 25-element character array, whereas the fourth line establishes n as a static
12-element floating-point array.

It is sometimes convenient to define an array size in terms of a symbolic constant rather than a fixed
integer quantity. This makes it easier to modify a program that utilizes an array, since all references to the
maximum array size (e.g., within for loops as well as in array definitions) can be altered simply by changing
the value of the symbolic constant.

EXAMPLE 9.2 Lowercase to Uppercase Text Conversion Here is a complete program that reads in a one-
dimensional character array, converts all of the clements to uppercase, and then displays the converted array. Similar
programs are shown in Examples 4.4, 6.9, 6.12 and 6.16.

/* read in a line of lowercase text to uppercase */

#include <stdio.h>
#include <ctype.h>

#define SIZE 80

main()

{
char letter[SIZE];
int count;

/* read in the line */

for (count = 0; count < SIZE; ++count)
letter{count] = getchar();

/* display the line in upper case */

for (count = 0; count < SIZE; ++count)
putchar(toupper{letter(count]));

Notice that the symbolic constant SIZE is assigned a value of 80. This symbolic constant, rather than its value,
appears in the array definition and in the two for statlements. (Remember that the value of the symbolic constant will be
substituted for the constant itself during the compilation process.) Therefore, in order to alter the program to
accommodate a different size array, only the #define statement must be changed.

For example, to alter the above program so that it will process a 60-element array, the original #define statement is
simply replaced by

#define SIZE 60

CHAP. 9] ARRAYS 243

This one change accommodates all of the necessary program alterations; there is no possibility that some required
program modification will be overlooked.

Automatic arrays, unlike automatic variables, cannot be initialized. However, external and static array
definitions can include the assignment of initial values if desired. The initial values must appear in the order
in which they will be assigned to the individual array elements, enclosed in braces and separated by commas.
The general form is

storage-class data-type arraylexpression) = {valuve 1, value 2, . . ., value n},;

where value 7 refers to the value of the first array element, value 2 refers to the value of the second
element, and so on. The appearance of the expression, which indicates the number of array elements, is
optional when initial values are present.

EXAMPLE 9.3 Shown below are several array definitions that include the assignment of initial values.
int digits{10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
static float x(6] = {0, 0.25, 0, -0.50, O, O};
char color([3] = {'R', 'E', 'D'};
Note that x is a static array. The other two arrays (digits and color) are assumed to be external arrays by virtue of their

placement within the program.
The results of these initial assignments, in terms of the individual array elements, are as follows. (Remember that the
subscripts in an n-element array range from 0 ton - 1.)

digits[0] = 1 x[0} = O color[0] = 'R'
digitsf{1) = 2 x[1] = 0.25 color[1]) = 'E'
digits[2] = 3 x[2) = © color[2] = 'D’
digits[3] = 4 x[3] = -0.50

digits[4] = 5 x[4) = 0

digits[5] = 6 x[5] = ©

digits[6] = 7

digits[(7] = 8

digits[8]) = 9

digits[9] = 10

All individual array elements that are not assignhed explicit initial values will automatically be set to zero.
This includes the remaining elements of an array in which some elements have been assigned nonzero values.
EXAMPLE 9.4 Consider the following array definitions.

int digits[10] = {3, 3, 3};
static float x[6] = {-0.3, 0 , 0.25};

The results, on an element-by-element basis, are as follows.

digits[0] = 3 x[0] = -0.3

digits[1] = 3 x(1] = 0

digits[2] = 3 x[2]) = 0.25

digits[3] = 0 x[3] = 0

digits[4) = 0 x[4] = 0

digits[5] = 0 x[5] = O

digits(6] = 0

digits[7] = 0

digits[8] = 0 -
digits[9] = 0

244 ARRAYS [CHAP. 9

In each case, all of the array elements are automatically set to zero except those that have been explicitly initialized within
the array definitions. Note that the repeated values (i.e., 3, 3, 3) must be shown individually.

The array size need not be specified explicitly when initial values are included as a part of an array
definition. With a numerical array, the array size will automatically be set equal to the number of initial
values included within the definition.

EXAMPLE 9.5 Consider the following array definitions, which are variations of the definitions shown in Examples 9.3
and 9.4.

int digits[] = {1, 2, 3, 4, 5, 6};
static float x[] = {0, 0.25, 0, -0.5};

Thus, digits will be a six-element integer array, and x will be a static, four-element floating-point array. The individual
elements will be assigned the following values. (Note the empty brackets in the array declarations.)

digits(0] = 1 x{0] = O
digits{1] = 2 X[(1] = 0.25
digits{2] = 3 x[2]) = O
digits[3] = 4 x[3] = -0.5
digits[(4] = 5

digits[5] = 6

Strings (i.e., character arrays) are handled somewhat differently, as discussed in Sec. 2.6. In particular,
when a string constant is assigned to an external or a static character array as a part of the array definition, the
array size specification is usually omitted. The proper array size will be assigned automatically. This will
include a provision for the null character \0, which is automatically added at the end of every string (see
Example 2.26).

EXAMPLE 9.6 Consider the following two character array definitions. Each includes the initial assignment of the
string constant "RED". However, the first array is defined as a three-element array, whereas the size of the second array is
unspecified.

char color[3] = *RED";

char color{] = "RED";
The results of these initial assignments are not the same because of the null character, \0, which is automatically added at
the end of the second string. Thus, the elements of the first array are

color(0] = 'R’
g
IDI

color(1]

color([2]
whereas the elements of the second array are

color(Q] = 'R'

color[1] = 'E'

color{2] = 'D'

color[3] = '\0'

Thus, the first form is incorrect, since the null character \0 is not included in the array.
The array definition could also have been written as

char color(4] = "RED";

CHAP. 9] ARRAYS 245

This definition is correct, since we are now defining a four-element array which includes an element for the null character,
However, many programmers prefer the earlier form, which omits the size specifier.

If a program requires a one-dimensional array declaration (because the array is defined elsewhere in the
program), the declaration is written in the same manner as the array definition with the following exceptions.

1. The square brackets may be empty, since the array size will have been specified as a part of the array
definition. Array declarations are customarily written in this form.

2. Initial values cannot be included in the declaration.

These rules apply to formal argument declarations within functions as well as external variable declarations.
However, the rules for defining multidimensional formal arguments are more complex (see Sec. 9.4).

EXAMPLE 9.7 Here is a skeletal outline of a two-file C program that makes use of external arrays.

Eirst file:

int ¢[] = {1, 2, 3}; /* external array DEFINITION */
char message[]) = "Hellol"; /* external array DEFINITION */
extern void functi(void); /* function prototype */

main()

{

}

Second file:

extern int c{]; /* external array DECLARATION */
extern char message[]; /* external array DECLARATION */
extern void functi(void) /* function definition */

{

}

This program outline includes two external arrays, ¢ and message. The first array (¢) is a three-element integer array
that is defined and initialized in the first file. The second array (message) is a character array that is also defined and
initialized in the first file. The arrays are then declared in the second file, because they are global arrays that must be
recognized throughout the entire program.

Neither the array definitions in the first file nor the array declarations in the second file include explicit size
specifications. Such size specifications are permissible in the first file, but are omitted because of the initialization.
Moreover, array size specifications serve no useful purpose within the second file, since the array sizes have already been
established.

9.2 PROCESSING AN ARRAY

Single operations which involve entire arrays are not permitted in C. Thus, if a and b are similar arrays (i.e.,
same data type, same dimensionality and same size), assignment operations, comparison operations, etc. must
be carried out on an element-by-element basis. This is usually accomplished within a loop, where each pass
through the loop is used to process one array element. The number of passes through the loop will therefore
equal the number of array elements to be processed.

246 ARRAYS [CHAP. 9

We have already seen several examples in which the individual elements of a character array are
processed in one way or another (see Examples 4.4, 4.19, 6.9, 6.12, 6.16, 6.19, 6.20, 6.32, 6.34, 8.3, 8.5 and
9.2). Numerical arrays are processed in much the same manner. In a numerical array, each array element
represents a single numerical quantity, as illustrated in the example below.

EXAMPLE 9.8 Deviations About an Average Suppose we want to read a list of n floating-point quantities and then
calculate their average, as in Example 6.17. In addition to simply calculating the average, however, we will also compute
the deviation of each numerical quantity about the average, using the formula

d=x;—avg

where x; represents each of the given quantities, i = 1, 2, - - *, n, and avg represents the calculated average.

In order to solve this problem we must store each of the given quantities in a one-dimensional, floating-point array.
This is an essential part of the program. The reason, which must be clearly understood, is as follows.

In all of the earlier examples where we calculated the average of a list of numbers, each number was replaced by its
successor in the given list (see Examples 6.10, 6.13, 6.17 and 6.31). Hence each individual number was no longer
available for subsequent calculations once the next number had been entered. Now, however, these individual quantities
must be retained within the computer in order to calculate their corresponding deviations after the average has been
determined. We therefore store them in a one-dimensional array, which we shall call 1ist.

Let us define 1ist to be a 100-element, floating-point array. However, we need not make use of all 100 elements.
Rather, we shall specify the actual number of elements by entering a positive integer quantity (not exceeding 100) for the
integer variable n.

Here is the complete C program.

/* calculate the average of n numbers,
then compute the deviation of each number about the average */

#include <stdio.h>

main()

{
int n, count;
float avg, d, sum = Q;
float 1list[100];

/* read a value for n */

printf(*\nHow many numbers will be averaged? ");
scanf("%d", &n);

printf("\n");

/* read the numbers and calculate their sum */
for (count = 0; count < n; ++count) {
printf("i = %d x = ", count + 1);
scanf("%f", &list[count]};
sum += list[count];

}

/* calculate and display the average */
avg = sum / n;
printf(*\nThe average is %5.2f\n\n*, avg);

CHAP. 9] ARRAYS 247

/* calculate and display the deviations about the average */
for (count = 0Q; count < n; ++count) {
d = list[count] - avg;
printf("i = %d x = %5.2f d = %5.2f\n", count + 1, list[count], d);

Note that the second scanft function (within the first for loop) includes an ampersand (&) in front of 1ist[count], since
we are entering a single array element rather than an entire array (see Sec. 4.4).

Now suppose the program is executed using the following five numerical quantities: x =3x= -2, x = 12,x =44,
x_=3.5. The interactive session, including the data entry and the calculated results, is shown below. The user’s responses
are underlined.

How many numbers will be averaged? 5

i=1 Xx =3
i=2 x=22
i=3 x=1
i=4 x=4.4
i=5 X =3.5

The average is 4.18

i=1 x= 3,00 d=-1,18
i=2 x=-2.00 d-=-6.18
i=83 x=12.00 d= 7.82
i=4 X = 4.40 d= 0.22
i=5 x= 3.0 d-=-0.68

In some applications it may be desirable to assign initial values to the elements of an array. This requires
that the array either be defined globally, or locally (within the function) as a static array. The next example
illustrates the use of a global array definition.

EXAMPLE 9.9 Deviations About an Average Revisited Let us again calculate the average of a given set of
numbers and then compute the deviation of each number about the average, as in Example 9.8. Now, however, let us
assign the given numbers to the array within the array definition. To do so, let us move the definition of the array list
outside of the main portion of the program. Thus, 1ist will become an external array. Moreover, we will remove the
explicit size specification from the definition, since the number of initial values will now determine the array size.

The initial values included in the following program are the same five values that were specified as input data for the
previous example. To be consistent, we will also assign an initial value for n. This can be accomplished by defining n as
either an automatic variable within main, or as an external variable. We have chosen the latter method, so that all of the
initial assignments that might otherwise be entered as input data are grouped together.

Here is the complete program.

/* calculate the average of n numbers,
then compute the deviation of each number about the average */
#include <stdio.h>

int n = §5;
float list[] = {3, -2, 12, 4.4, 3.5};

main()

{

int count;
float avg, d, sum = 0;

248 ARRAYS [CHAP. 9

/* calculate and display the average */
for (count = 0; count < n; ++count)
sum += list{count};
avg = sum / n;
printf("\nThe average is %5.2f\n\n", avg);

/* calculate and display the deviations about the average */
for (count = 0; count < n; ++count) {
d = list[count] - avg;
printf(*i = %dx = %5.2f d = %5.2f\n", count + 1, list{count], d);

Note that this version of the program does not require any input data.
Execution of this program will generate the following output.

The average is 4.18

i=1 x= 3.00 d=-1.18
1=2 x=-2.00 d-=-6.18
i=3 x=12.00 d= 7.82
1=4 X = 4.40 d = 0.22
i=5 x = 3.50 d = -0.68

9.3 PASSING ARRAYS TO FUNCTIONS

An entire array can be passed to a function as an argument. The manner in which the array is passed differs
markedly, however, from that of an ordinary variable.

To pass an array to a function, the array name must appear by itself, without brackets or subscripts, as an
actual argument within the function call. The corresponding formal argument is written in the same manner,
though it must be declared as an array within the formal argument declarations. When declaring a one-
dimensional array as a formal argument, the array name is written with a pair of empty square brackets. The
size of the array is not specified within the formal argument declaration.

Some care is required when writing function prototypes that include array arguments. An empty pair of
square brackets must follow the name of each array argument, thus indicating that the argument is an array. If
argument names are not included in a function declaration, then an empty pair of square brackets must follow
the array argument data type.

EXAMPLE 9.10 The following program outline illustrates the passing of an array from the main portion of the program
to a function.

float average(int a, float x[]}; /* function prototype */

main()

{
int n; /* variable DECLARATION */
float avg; /* variable DECLARATION */
float list{100]; /* array DEFINITION */

avg = average(n, list);

CHAP. 9] ARRAYS 249

float average(int a, float x[]) /* function DEFINITION */
{

Within main we see a call to the function average. This function call contains two actual arguments — the integer
variable n, and the one-dimensional, floating-point array 1ist. Notice that 1ist appears as an ordinary variable within
the function call; i.e., the square brackets are not included.

The first line of the function definition includes two formal arguments, a and x. The formal argument declarations
establish a as an integer variable and x as a one-dimensional, floating-point array. Thus, there is a correspondence
between the actual argument n and the formal argument a. Similarly, there is a correspondence between the actual
argument 1ist and the formal argument x. Note that the size of x is not specified within the formal argument declaration.

Note that the function prototype could have been written without argument names, as

float average(int, float[]}); /* function declaration */

Either form is valid.

We have already discussed the fact that arguments are passed to a function by value when the arguments
are ordinary variables (see Sec. 7.5). When an array is passed to a function, however, the values of the array
elements are not passed to the function. Rather, the array name is interpreted as the address of the first array
element (i.e., the address of the memory location containing the first array element). This address is assigned
to the corresponding formal argument when the function is called. The formal argument therefore becomes a
pointer to the first array element (more about this in the next chapter). Arguments that are passed in this
manner are said to be passed by reference rather than by value.

When a reference is made to an array element within the function, the value of the element’s subscript is
added to the value of the pointer to indicate the address of the specified array element. Therefore any array
element can be accessed from within the function. Moreover, if an array element is altered within the
Sunction, the alteration will be recognized in the calling portion of the program (actually, throughout the entire
scope of the array).

EXAMPLE 9.11 Here is a simple C program that passes a three-element integer array to a function, where the array
elements are altered. The values of the array clements are displayed at three different places in the program, thus

illustrating the effects of the alterations.

#include <stdio.h>

void modify(int a[]); /* function prototype */
main()
{

int count, a[3]; /* array definition */

printf("\nFrom main, before calling the function:\n");
for (count = 0; count <= 2; ++count) {

afcount] = count + 1;

printf("a[%d]} = %d\n*, count, a[count]);
}

modify(a);

printf(“\nFrom main, after calling the function:\n");
for (count = 0; count <=2; ++count)
printf("a[%d] = %d\n", count, a[count]);

250

void

{

ARRAYS [CHAP. 9

modify(int a[]) /* function definition */

int count;

printf("\nFrom the function, after modifying the values:\n");
for (count = 0; count <= 2; ++count) {

ajcount] = -9;

printf{*a[%d) = %d\n"', count, a[count]);
}

return;

The array elements are assigned the values a[0] = 1, a[1]) = 2and a[{2) = 3 within the first loop appearing in

main. Th

ese values are displayed as soon as they are assigned. The array is then passed to the function modify, where

each array element is assigned the value -9. These new values are then displayed from within the function. Finally, the
values of the array elements are again displayed from main, after control has been transferred back to main from modify.
When the program is executed, the following output is generated.

From
af{o)
af1]
a(2j

From
a0}
af1]
af2]

From
a[0]
af1]
af2)

main, before calling the function:

the function, after modifying the values:
= -9
= -9
= -9

main, after calling the function:
= -9
= -9
-9

These results show that the elements of a are altered within main as a result of the changes that were made within modify.

EXAMPLE 9.12 We now consider a variation of the previous program. The present program includes the use of a

global var

iable, and the transfer of both a local variable and an array to the function.

#include <stdio.h>

int a = 1; /* global variable */
void modify(int b, int c[]); /* function prototype */
main()
{

int b = 2; /* local variable */

int count, c¢[3]; /* array definition */

printf("\nFrom main, before calling the function:\n");
printf(*a = %d b = %d\n", a, b);
for (count = 0; count <= 2; ++count) {

c[count] = 10 * (count + 1);

printf(“c[%d} = %d\n", count, c[count]},;

CHAP. 9} ARRAYS 251

modify(b, ¢); /* function access */
printf(*\nFrom main, after calling the function:\n");
printf(*a = %d b = %d\n", a, b);
for (count = 0; count <=2; ++count)

printf(*c[%d] = %d\n*, count, c[count]);

}
void modify(int b, int c[]) /* function definition */
{
int count;
printf(*\nFrom the function, after modifying the values:\n");
a = -999;
b = -999;
printf("a = %d b = %d\n", a, b);
for (count = 0; count <= 2; ++count) {
c[count] = -9;
printf("c[%d] = %d\n", count, c[count]);
}
return;
}

When the program is executed, the following output is generated.

From main, before calling the function:
a=1 b =2

c[0] = 10
c[1] = 20
c[2] = 30

From the function, after modifying the values:
a = -999 b = -999

c[0} = -9
c[1] = -9
c[2] = -9

From main, after calling the function:
a=-999 b=2

¢[0] = -9
c[t] = -9
c[2] = -9

We now see that the value of a and the elements of c are altered within main as a result of the changes that were made in
modify. However, the change made to b is confined to the function, as expected. (Compare with the results obtained in

the last example, and in Example 7.12.)

The ability to alter an array globally within a function provides a convenient mechanism for moving
multiple data items back and forth between the function and the calling portion of the program. Simply pass
the array to the function and then alter its elements within the function. Or, if the original array must be
preserved, copy the array (element-by-element) within the calling portion of the program, pass the copy to the
function, and perform the alterations. You should exercise some caution in altering an array within a function,
however, since it is very easy to unintentionally alter the array outside of the function.

252 ARRAYS [CHAP. 9

EXAMPLE 9.13 Reordering a List of Numbers Consider the well-known problem of rearranging (i.e., sorting) a list
of n integer quantities into a sequence of increasing values. Let us write a sorting program in such a manner that
unnecessary storage will not be used. Therefore the program will contain only one array—a one-dimensional, integer
array called x, which will be rearranged one element at a time.

The rearrangement will begin by scanning the entire array for the smallest number. This number will then be
interchanged with the first number in the array, thus placing the smallest number at the top of the list. Next the remaining
n ~ 1 numbers will be scanned for the smallest, which will be exchanged with the second number. The remaining n — 2
numbers will then be scanned for the smallest, which will be interchanged with the third number, and so on, until the
entire array has been rearranged. The complete rearrangement will require a total of n — 1 passes through the array,
though the length of each scan will become progressively smaller with each pass.

In order to find the smallest number within each pass, we sequentially compare each number in the array, x[1], with
the starting number, x[item], where item is an integer variable that is used to identify a particular array element. If
x[1] is smaller than x[item], then we interchange the two numbers; otherwise we leave the two numbers in their original
positions. Once this procedure has been applied to the entire array, the first number in the array will be the smallest. We
then repeat the entire procedure n — 2 times, for a total of n — 1 passes (item=0,1,...,n-2).

The only remaining question is how the two numbers are actually interchanged. To carry out the interchange, we
first temporarily save the value of x[item] for future reference. Then we assign the current value of x[i] to x[item].
Finally, we assign the original value of x[item], which has temporarily been saved, to x[i]. The interchange is now
complete.

The strategy described above can be written in C as follows.

/* reorder all array elements */
for (item = 0; item < n - 1; ++item)
/* find the smallest of all remaining elements */
for (1 = item + 1; 1 < n; ++1i)
if (x[i) < x[item]) {
/* interchange two elements */
temp = x[item];
x[item] = x[i];
x[1i] = temp;

We are assuming that item and i are integer variables that are used as counters, and that temp is an integer variable that is

used to temporarily store the value of x[item].
It is now a simple matter to add the required variable and array definitions, and the required input/output statements.

Here is a complete C program.

/* reorder a one-dimensional, integer array from smallest to largest */
#include <stdio.h>
#define SIZE 100

void reorder(int n, int x(]);

main()

{
int i, n, x[SIZE);

/* read in a value for n */

printf("\nHow many numbers will be entered? *);
scanf("%d", &n);

printf("\n*);

/* read in the list of numbers */

CHAP. 9] ARRAYS 253

for (1 =0; i < n; ++i) {
printf(*"i = %d x =", i + 1);
scanf ("%d*, &x[i]);

}

/* reorder all array elements */
reorder(n, Xx);

/* display the reordered list of numbers */
printf("\n\nReordered List of Numbers:\n\n");
for (i = 0; i < n; ++i)

printf("i = %d x = %d\n", i + 1, x{1i]);

}
void reorder(int n, int x[]) /* rearrange the list of numbers */
{
int i, item, temp;
for (item = 0; item < n - 1; ++item)
/* find the smallest of all remaining elements */
for (i = item + 1; i < n; ++i)
if (x[i] < x[item]) {
/* interchange two elements */
temp = x[item];
x[item] = x[i];
x[i} = temp;
}
return;
}

In this program x is defined initially as a 100-element integer array. (Notice the use of the symbolic constant SIZE to
define the size of x.) A value for n is first read into the computer, followed by numerical values for the first n elements of
x (i.e.,, x[0], x[1],...,x[n — 1]). Following the data input, n and x are passed to the function reorder, where the
first n elements of x are rearranged into ascending order. The reordered elements of x are then displayed from main at the
conclusion of the program.

The declaration for reorder appearing in main is written as a function prototype, as a matter of good programming
practice. Notice the manner in which the function arguments are written. In particular, note that the second argument is
identified as an integer array by the empty square brackets that follow the array name, i.e., int x[]. The square brackets
are a required part of this argument specification.

Now suppose that the program is used to reorder the following six numbers: 595 78 -1505 891 -29 -7. The
program will generate the following interactive dialog. (The user’s responses are underlined, as usual.)

How many numbers will be entered? 6

i=1 x = 595
i=2 x =78
1=23 X = -1505
i=4 x =891
i=5 x=-29
i=6 x=-7

Reordered list of numbers:

254 ARRAYS (CHAP. 9

= -1505
= =29
-7
=178

= 595
= 891

P e e e e e
uwo
DS WN =
X X X X X x

1

It should be mentioned that the return statement cannot be used to return an array, since return can
pass only a single-valued expression back to the calling portion of the program. Therefore, if the elements of
an array are to be passed back to the calling portion of the program, the array must either be defined as an
external array whose scope includes both the function and the calling portion of the program, or it must be
passed to the function as a formal argument.

EXAMPLE 9.14 A Piglatin Generator Piglatin is an encoded form of English that is often used by children as a
game. A piglatin word is formed from an English word by transposing the first sound (usuaily the first letter) to the end of
the word, and then adding the letter “a”. Thus, the word “dog” becomes “ogda,” “computer” becomes “omputerca,”
“piglatin” becomes “iglatinpa™ (or “igpa atinla,” if spelled as two separate words), and so on.

Let us write a C program that will accept a line of English text and then print out the corresponding text in piglatin.
We will assume that each textual message can be typed on one 80-column line, with a single blank space between
successive words. (Actually, we will require that the piglatin message not exceed 80 characters. Therefore the original
message must be somewhat less than 80 characters, since the corresponding piglatin message will be lengthened by the
addition of the letter “a” after each word.) For simplicity, we will transpose only the first letter (not the first sound) of
each word. Also, we will ignore any special consideration that might be given to capital letters and to punctuation marks.

We will use two character arrays in this program. One array will contain the original line of English text, and the
other will contain the translated piglatin.

The overall computational strategy will be straightforward, consisting of the following major steps.

1. Initialize both arrays by assigning blank spaces to all of the elements.
2. Read in an entire fine of text (several words).

Determine the number of words in the line (by counting the number of single blank spaces that are followed by a
nonblank space).

4. Rearrange the words into piglatin, on a word-by-word basis, as follows:
(a) Locate the end of the word.
(b) Transpose the first letter to the end of the word and then add an “a.”
(c) Locate the beginning of the next word.

5. Display the entire line of piglatin.

We will continue this procedure repetitively, until the computer reads a line of text whose first three letters are “end” (or
“END™).

In order to implement this strategy we will make use of two markers, called m1 and m2, respectively. The first marker
(m1) will indicate the position of the beginning of a particular word within the original line of text. The second marker
(m2) will indicate the end of the word. Note that the character in the column preceding column number m1 will be a blank
space (except for the first word). Also, note that the character in the column beyond column number m2 will be a blank
space.

This program lends itself to the use of a function for carrying out each of the major tasks. Before discussing the
individual functions, however, we define the following program variables.

english = a one-dimensional character array that represents the original line of text
piglatin = a one-dimensional character array that represents the new line of text (i.e., the piglatin)

words = an integer variable that indicates the number of words in the given line of text

[

n = an integer variable that is used as a word counter (n =1, 2, . . ., words)
count = an integer variable that is used as a character counter within each line (count=0,1,2,...,79)

We will also make use of the integer variables m1 and m2 discussed earlier.

CHAP. 9] ARRAYS 255

Now let us return to the overall program outline presented above. The first step, array initialization, can be carried
out in a straightforward manner with the following function.

/* initialize the character arrays with blank spaces */

void initialize(char english[], char piglatin[])

{
int count;
for (count = 0; count < 80; ++count)
english[count] = piglatin[count] = ' ’;
return;
}

Step 2 can also be carried out with a simple function. This procedure will contain a while loop that will continue to
read characters from the keyboard until an end of line is detected. This sequence of characters will become the elements
of the character array english. Here is the complete function.

/* read one line of English text */

void readinput(char english(])

{
int count = O;
char c;
while ((¢ = getchar()) I= '\n') {
englishfcount] = c;
++count;
}
return;
}

Step 3 of the overall outline is equally straightforward. We simply scan the original line for occurrences of single
blank characters followed by nonblank characters. The word counter (words) is then incremented each time a single
blank character is encountered. Here is the word-count routine.

/* scan the English text and determine the number of words */

int countwords(char english([])

{
int count, words = 1;
for (count = 0; count < 79; ++count)
it (english[count] == ' ' && englishfcount + 1] 1= ' ')
++words;
return (words);
}

Now consider step 4 (rearrange the English text into piglatin), which is really the heart of the program. The logic for
carrying this out is rather involved since it requires three separate, though related, operations. We must first identify the
end of each word by finding the first blank space beyond m1. We then assign the characters that make up the word to the
character array piglatin, with the first character at the end of the word. Finally, we must reset the initial marker, to
identify the beginning of the next word.

256 ARRAYS [CHAP. 9

The logic must be handled carefully, since the new line of text will be longer than the original line (because of the
latter “a” added at the end). Hence, the characters in the first piglatin word will occupy locations m1 to m2+1. The
characters in the second word will occupy locations m1+1 to m2+2 (note that these are new values for m1 and m2), and so
on. These rules can be generalized as follows.

First, for word number n, transfer all characters except the first from the original line to the new line. This can be
accomplished by writing

for (count = mi; count < m2; ++count)
piglatin{count + (n - 1)] = english{count + 1];

The last two characters (i.e., the first character in the original word plus the letter “a”) can then be added in the
following manner.

piglatin{m2 + (n - 1)] = english[mi];
piglatin[m2 + n}) = 'a‘;

We then reset the value of m1, i.e,
ml = m2 + 2;

in preparation for the next word. This entire group of calculations is repeated for each word in the original line.
Here is the function that accomplishes all of this.

/* convert each word into piglatin */

vold convert(int words, char english{], char piglatin[])

{
int n, count;
int m = 0; /* marker -> beginning of word */
int m2; /* marker -> end of word */
/* convert each word */
for (n = 1; n <= words; ++n) {
/* locate the end of the current word */
count = mi,
while (english{count} I= ' ')
m2 = count++;
/* transpose the first letter and add 'a' */
for (count = m1; count < m2; ++count)
piglatin{count + (n - 1)] = english{count + 1];
piglatin{m2 + (n - 1)] = english{mt];
piglatin{m2 + n] = 'a‘';
/* reset the initial marker */
mi = m2 + 2;
}
return;
}

Step 5 (display the piglatin) requires little more than a for loop. The complete function can be written as

CHAP. 9]

ARRAYS

/* display the line of text in piglatin */

void writeoutput(char piglatin[])

{

int count = 0;

for (count = 0; count < 80; ++count)

putchar(piglatin[count]);

printf(*\n");
return;

}

257

Now consider the main portion of the program. This is nothing more than a group of definitions and declarations, an
initial message, a do - while loop that allows for repetitious program execution (until the word “end” is detected, in either
upper or lowercase, as the first word in the english text), and a closing message. The do - while loop can be made to
continue indefinitely by using the test (words >= 0) at the end of the loop. Since words is assigned an initial value of 1
and its value does not decrease, the test will always be true.

The complete program is shown below.

/* convert English to piglatin, one line at a time */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

void initialize(char englishf], char piglatin[]);
void readinput(char english{]);
int countwords(char english{]);

void convert(int words, char english[], char piglatin[]);

void writeoutput(char piglatin[]);

main()

{

char english[80), piglatin[80];
int words;

printf("Welcome to the Piglatin Generator\n\n");
printf(*Type \'END\' when finished\n\n"});

do {

}

/* process a new line of text */

initialize(english, piglatin);
readinput(english);

/* test for stopping condition */

if (toupper(english([0]) == 'E' &&
toupper(english[1]) == 'N' &&
toupper(english[2]) == 'D') break;

/* count the number of words in the line */
words = countwords(english);

/* convert english into piglatin */
convert (words, english, piglatin);
writeoutput(piglatin);

while (words >= 0);

printf(®\naveHa aa icena ayda

(Have a nice day)\n");

258 ARRAYS [CHAP. 9

/* initialize the character arrays with blank spaces */

void initialize(char english{], char piglatin[])

{
int count;
for (count = 0; count < 80; ++count)
english[count] = piglatinfcount] = ' ';
return;
}

/* read one line of English text */

void readinput(char english[])

{
int count = Q;
char c¢;
while ((c = getchar()) != *\n') {
englishf{count] = c;
++count;
}
return;
}

/* scan the English text and determine the number of words */

int countwords(char english(])

{
int count, words = 1;
for (count = 0; count < 79; ++count)
if (english{count] == ' ' && english{count + 1] 1= ' ')
++words;
return (words);
}

/* convert each word into piglatin */

void convert(int words, char english[], char piglatin[])

{
int n, count;
int m1 = 0; /* marker -> beginning of word */
int m2; /* marker -> end of word */

/* convert each word */
for (n = 1, n <= words; ++n) {

/* locate the end of the current word */
count = mi;
while (english{count] != ' ')

m2 = count++;

/* transpose the first letter and add 'a' */

for (count = mi; count < m2; ++count)
piglatin[count + (n - 1)] = english[count + 1];

piglatin[m2 + (n - 1)] = english(m1);

piglatin(m2 + n] = ‘a‘;

CHAP. 9] ARRAYS 259

/* reset the initial marker */
mi = m2 + 2;

}

return;

/* display the line of text in piglatin */

void writeoutput(char piglatin{])

{
int count = 0;
for (count = 0; count < 80, ++count)
putchar(piglatincount]);
printf("\n");
return;
}

Notice that each function requires at least one array as an argument. In countwords and writeoutput, the array
arguments simply provide input to the functions. In convert, however, one array argument provides input to the function
and the other provides output to main. And in initialize and readinput, the arrays represent information that is
returned to main.

The function declarations within main are written as full function prototypes. Note that each array argument is
identified by an empty pair of square brackets following the array name.

Now consider what happens when the program is executed. Here is a typical interactive session, in which the user’s
entries are underlined.

Welcome to the Piglatin Generator
Type 'END' when finished

C is a popular structured programming language
Ca sia aa opularpa tructuredsa rogrammingpa anguagela

baseball is the great American pastime,
aseballba sia heta reatga mericanAa astime,pa

though there are many who prefer football
houghta hereta reaa anyma howa referpa ootballfa

please do not sneeze in the computer room
leasepa oda otna neezesa nia heta omputerca oomra

end

aveHa aa icena ayda (Have a nice day)

The program does not include any special accommodations for punctuation marks, uppercase letters, or double-letter
sounds (e.g., “th” or “sh”). These refinements are left as exercises for the reader.

9.4 MULTIDIMENSIONAL ARRAYS

Multidimensional arrays are defined in much the same manner as one-dimensional arrays, except that a
separate pair of square brackets is required for each subscript. Thus, a two-dimensional array will require two
pairs of square brackets, a three-dimensional array will require three pairs of square brackets, and so on.

In general terms, a multidimensional array definition can be written as

260 ARRAYS [CHAP. 9

storage-class data-type arrayl|expression [I][expression 2] . . .[expression n];

where storage-class refers to the storage class of the array, data- typeis its data type, array is the array
name, and expression 1, expression 2, . . ., expression n are positive-valued integer
expressions that indicate the number of array elements associated with each subscript. Remember that the
storage-class is optional; the default values are automatic for arrays that are defined inside of a function,
and external for arrays defined outside of a function.

We have already seen that an n-element, one-dimensional array can be thought of as a /ist of values, as
illustrated in Fig. 9.1. Similarly, an m x n, two-dimensional array can be thought of as a table of values having
m rows and n columns, as illustrated in Fig. 9.2. Extending this idea, a three-dimensional array can be
visualized as a set of tables (e.g., a book in which each page is a table), and so on.

col t col 2 col 3 col (n-1) coln
row 1

x{0][0] x[O)J[1} x[O][2] x[0][n-2] x{0][n-1)
row 2

x{11[01 x[11(11 x[1][2] x[(1][n-2] x[1]{n-1]

® L] L] L) []

row m

x[m-1]1[0] x[m-1][1] x[m-1][2] x[m-1][n-2] x{m-1][n-1]

X is am x n, two-dimensional array
Fig. 9.2

EXAMPLE 9.15 Several typical multidimensional array definitions are shown below.
float table([50)[50];
char page[24][80);
static double records[100][66][255];

static double records[L][M]([N];

The first line defines table as a floating-point array having 50 rows and 50 columns (hence 50 x 50 = 2500 elements),
and the second line establishes page as a character array with 24 rows and 80 columns (24 x 80 = 1920 elements). The
third array can be thought of as a set of 100 static, double-precision tables, each having 66 lines and 255 columns (hence
100 x 66 x 255 = 1,683,000 elements).

The last definition is similar to the preceding definition except that the array size is defined by the symbolic constants
L, MandN. Thus, the values assigned to these symbolic constants will determine the actual size of the array.

Some care must be given to the order in which initial values are assigned to multidimensional array
elements. (Remember, only external and static arrays can be initialized.) The rule is that the last (rightmost)
subscript increases most rapidly, and the first (leftmost) subscript increases least rapidly. Thus, the elements
of a two-dimensional array will be assigned by rows; i.e., the elements of the first row will be assigned, then
the elements of the second row, and so on.

CHAP. 9} ARRAYS 261

EXAMPLE 9.16 Consider the following two-dimensional array definition.
int values[3][4] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};

Note that values can be thought of as a table having 3 rows and 4 columns (4 elements per row). Since the initial values
are assigned by rows (i.e., last subscript increasing most rapidly), the results of this initial assignment are as follows.

values[0][0] = 1 values[0][1] = 2 values[0][2] = 3 values[0][3]) = 4
values[1][0] = & values[1][1] = 6 values[1][2] = 7 values[1])[3] = 8
values[2][0] = 9 values[2][1] = 10 values[2][2] = 11 values[2][3] = 12

Remember that the first subscript ranges from 0 to 2, and the second subscript ranges from 0 to 3.

The natural order in which the initial values are assigned can be altered by forming groups of initial
values enclosed within braces (i.e., { . .. }). The values within each innermost pair of braces will be assigned
to those array elements whose last subscript changes most rapidly. In a two-dimensional array, for example,
the values within an inner pair of braces will be assigned to the elements of a row, since the second (column)
subscript increases most rapidly. If there are too few values within a pair of braces, the remaining elements of
that row will be assigned zeros. However, the number of values within each pair of braces cannot exceed the
defined row size.

EXAMPLE 9.17 Here is a variation of the two-dimensional array definition presented in the last example.

int values[3][4] = {
{1, 2, 3, 4},
{6, 6, 7, 8},
{9, 10, 11, 12}
}i

This definition results in the same initial assignments as in the last example. Thus, the four values in the first inner pair of
braces are assigned to the array elements in the first row, the values in the second inner pair of braces are assigned to the
array elements in the second row, etc. Note that an outer pair of braces is required, containing the inner pairs.

Now consider the following two-dimensional array definition.

int values([3][4] = {

{11 2) 3)!
{4, 5, 6},
{7, 8, 9}

Y

This definition assigns values only to the first three elements in each row. Therefore, the array elements will have the
following initial values.

values([0][0] = 1 values[O0][1] = 2 values[0][2] = 3 values[0][3] = 0
values[1][0] = 4 values[1][1] = 5 values[1][2] = 6 values[1][3] = 0
values[2][0] = 7 values[2][1] = 8 values([2][2] = 9 values[2][3] = O

Notice that the last element in each row is assigned a value of zero.
If the preceding array definition is written as

int values[3][4) = {1, 2, 3, 4, 5, 6, 7, 8, 9};

then three of the array elements will again be assigned zeros, though the order of the assignments will be different. In
particular, the array elements will have the following initial values.

262

values([0][0]
values([1][0]
values{2] (0]

1 values[0][1]
5 values[1][1]
9 values(2][1)

ARRAYS

2